def triangle_area_loop():
    '''() -> number

    Return the area of a triangle with dimentions base and height given by the user.

    '''
    base = int(input("enter the triangle's base: "))
    height = int(input("enter the triangle's height: "))

    area = triangle_area.triangle_area(base, height)
    return area
def triangle_monomial_integral(i, j, t):

    #*****************************************************************************80
    #
    ## TRIANGLE_MONOMIAL_INTEGRAL integrates a monomial over an arbitrary triangle.
    #
    #  Location:
    #
    #    http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle_monomial_integral.py
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    23 April 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer I, J, the exponents of X and Y in the monomial.
    #    0 <= I, J.
    #
    #    Input, real T(2,3), the vertices of the triangle.
    #
    #    Output, real Q, the integral of X^I * Y^J over triangle T.
    #
    import numpy as np
    from poly_power_linear import poly_power_linear
    from poly_product import poly_product
    from rs_to_xy_map import rs_to_xy_map
    from triangle_area import triangle_area
    from triangle01_poly_integral import triangle01_poly_integral
    #
    #  Get map coefficients from reference RS triangle to general XY triangle.
    #    R = a+b*X+c*Y
    #    S = d+e*X+f*Y
    #
    a, b, c, d, e, f = rs_to_xy_map(t)
    #
    #  Compute
    #    P1(R,S) = (a+b*R+c*S)^i.
    #    P2(R,S) = (d+e*R+f*S)^j.
    #
    d1 = 1
    p1 = np.array([a, b, c])
    dp1, pp1 = poly_power_linear(d1, p1, i)

    d2 = 1
    p2 = np.array([d, e, f])
    dp2, pp2 = poly_power_linear(d2, p2, j)
    #
    #  Compute the product
    #    P3(R,S) = (a+b*R+c*S)^i * (d+e*R+f*S)^j.
    #
    d3, p3 = poly_product(dp1, pp1, dp2, pp2)
    #
    #  Compute the integral of P3(R,S) over the reference triangle.
    #
    q = triangle01_poly_integral(d3, p3)
    #
    #  Multiply by the area of the physical triangle T(X,Y) divided by
    #  the area of the reference triangle.
    #
    q = q * triangle_area(t) / 0.5

    return q
 def test_triangle_area_side_length_0(self):
     eq_(0, triangle_area(0))
 def test_triangle_area_side_length10(self):
     eq_(55, triangle_area(10))
 def test_triangle_area_side_length_negative(self):
     eq_(0, triangle_area(-5))
 def test_triangle_area_side_length_1(self):
     eq_(1, triangle_area(1))
 def test_triangle_area_side_length2(self):
     eq_(3, triangle_area(2))
 def test_triangle_area_side_length_0(self):
     eq_(0, triangle_area(0))
 def test_triangle_area_side_length_negative(self):
     eq_(0, triangle_area(-5))
 def test_triangle_area_side_length10(self):
     eq_(55, triangle_area(10))
 def test_triangle_area_side_length2(self):
     eq_(3, triangle_area(2))
 def test_triangle_area_side_length_1(self):
     eq_(1, triangle_area(1))