def simulate_circle(no_realizations, Tmin=400, Tmax=800):
    # Create the tree
    K = 3
    depth, leaf_path, possible_paths, leaf_nodes = utils.create_balanced_binary_tree(
        K)

    # Define emission parameters
    C = np.zeros((D_out, D_in + 1))
    C[:, :-1] = np.eye(D_out)
    C[0, 1] = 2
    S = .001 * np.eye(D_out)

    # Create dynamics
    theta_1 = -.15 * np.pi / 2
    theta_2 = -.05 * np.pi / 2
    theta_3 = -.35 * np.pi / 2

    A = []
    A.append(np.zeros((D_in, D_in + 1, 1)))

    At = np.zeros((D_in, D_in + 1, 2))
    At[:, :-1, 0] = np.array([[np.cos(theta_3), -np.sin(theta_3)],
                              [np.sin(theta_3),
                               np.cos(theta_3)]])
    At[:, :, 1] *= np.nan
    A.append(At)

    At = np.zeros((D_in, D_in + 1, 4))
    At[:, :, 0] *= np.nan
    At[:, :, 1] *= np.nan
    At[:, :-1, 2] = np.array([[np.cos(theta_1), -np.sin(theta_1)],
                              [np.sin(theta_1),
                               np.cos(theta_1)]])
    At[:, :-1, 3] = np.array([[np.cos(theta_2), -np.sin(theta_2)],
                              [np.sin(theta_2),
                               np.cos(theta_2)]])
    A.append(At)

    Q = np.repeat(.001 * np.eye(D_in)[:, :, na], K, axis=2)  # Noise covariance

    # Create hyperplanes
    R_par = np.zeros((D_in + 1, 1))
    R_par[0, 0] = 100
    R_par[1, 0] = 100

    R = []
    R.append(R_par)
    R_temp = np.zeros((D_in + 1, 2))
    R_temp[:, 0] *= np.nan  # Left hyperplane
    R_temp[:-1, 1] = np.array([-100, 100])  # Right hyperplane
    R.append(R_temp)

    kwargs = {
        'D_in': D_in,
        'D_out': D_out,
        'K': K,
        'dynamics': A,
        'dynamics_noise': Q,
        'emission': C,
        'emission_noise': S,
        'hyper_planes': R,
        'possible_paths': possible_paths,
        'leaf_path': leaf_path,
        'leaf_nodes': leaf_nodes
    }

    true_model = TroSLDS(**kwargs)  # Create model

    # Generate data from model
    Xreal = []
    Yreal = []
    Zreal = []
    starting_pts = npr.uniform(-5, 5, (D_in, no_realizations))
    for reals in tqdm(range(no_realizations)):
        T = npr.randint(Tmin, Tmax + 1)
        y, x, z = true_model._generate_data(T, starting_pts[:, reals])
        Xreal.append(x)
        Yreal.append(y)
        Zreal.append(z)

    return Xreal, Yreal, Zreal, true_model
from trslds.models import TroSLDS
from numpy import newaxis as na
import trslds.utils as utils
import matplotlib.pyplot as plt
import trslds.initialize as init
import trslds.plotting as plotting
import seaborn as sns
color_names = ["windows blue", "leaf green", "red", "orange"]
colors_leaf = sns.xkcd_palette(color_names)
npr.seed(0)
# In[1]:
D_in = 2
D_out = 2
# Create the tree
K = 4
depth, leaf_path, possible_paths, leaf_nodes = utils.create_balanced_binary_tree(K)

# Define emission parameters
C = np.zeros((D_out, D_in + 1))
C[:, :-1] = np.eye(D_out)
C[0, 1] = 2
S = .1 * np.eye(D_out)

# Create dynamics
A = []
A.append(np.zeros((D_in, D_in + 1, 1)))
A.append(np.zeros((D_in, D_in + 1, 2)))
At = np.zeros((D_in, D_in + 1, 4))
theta_1 = -.15*np.pi/2
theta_2 = -.05*np.pi/2
                        vmax=1,
                        cmap=cmap,
                        origin='lower')
        ax.set_aspect('auto')
    ax.set_title('inferred vector field')
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')

    # In[]
    #Plot vector field of root node
    ax = fig.add_subplot(gs[0, 2])
    root_depth = 1
    root_K = 1
    _, root_leaf_path, _, _ = utils.create_balanced_binary_tree(root_K)
    X, Y, arrows = plotting.rot_vector_field(At[0], trslds.R, xmin, xmax, ymin,
                                             ymax, delta, root_depth,
                                             root_leaf_path, root_K, transform)
    norm = np.sqrt(arrows[:, :, 0]**2 + arrows[:, :, 1]**2)
    U = arrows[:, :, 0] / norm
    V = arrows[:, :, 1] / norm

    ax.streamplot(X, Y, U, V, color=np.log(norm), cmap='plasma_r')
    ax.set_title('vector field of root node')
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')

    # In[]
Exemple #4
0
beta = 8.0 / 3.0


def f(state, t):
    x, y, z = state  # unpack the state vector
    return sigma * (y - x), x * (rho - z) - y, x * y - beta * z  # derivatives


t = np.arange(0.0, 50.01, .01)
states = (odeint(f, 2 * pt, t) / 2).T

"Plot generated trajectories from second level"
Qsecond = np.zeros((3, 3, 2))
Qsecond[:, :, 0] = (Qt[:, :, 0] + Qt[:, :, 1]) / 2
Qsecond[:, :, 1] = (Qt[:, :, 2] + Qt[:, :, 3]) / 2
_, second_lp, _, _ = utils.create_balanced_binary_tree(2)
xnew, znew = utils.generate_trajectory(At[1], Qsecond, trslds.R,
                                       trslds.x[2][:, 2], 2, second_lp, 2,
                                       50000, D_in)
xnew = transform[:, :-1] @ xnew + transform[:, -1][:, na]
ax = fig.add_subplot(gs[0, 1], projection='3d')
ax.cla()
for t in range(xnew[0, :].size):
    ax.plot(xnew[0, t:t + 2],
            xnew[1, t:t + 2],
            xnew[2, t:t + 2],
            color=colors_leaf[int(znew[t])])
ax.plot(states[0, :],
        states[1, :],
        states[2, :],
        color="slategray",