def create_random_input(): """ Create a simple dataset where output = input_1 * 2.0 """ datasets = collections.OrderedDict() datasets['simple'] = { 'train': torch.utils.data.DataLoader(utils.NumpyDatasets(input_1=np.random.rand( 10, 100), ), batch_size=10, shuffle=False), 'valid': torch.utils.data.DataLoader(utils.NumpyDatasets(input_1=np.random.rand( 10, 100), ), batch_size=10, shuffle=False) } return datasets
def inputs_fn(): datasets = collections.OrderedDict() datasets['dataset_1'] = { 'train': torch.utils.data.DataLoader(utils.NumpyDatasets( var_x1=np.asarray([[-1, -1], [1, -1], [-1, 1], [1, 1]]), var_y=np.asarray([0, 1, 1, 0])), batch_size=100) } return datasets
def create_simple_regression(): """ Create a simple dataset where output = input_1 * 2.0 """ datasets = collections.OrderedDict() datasets['simple'] = { 'train': torch.utils.data.DataLoader(utils.NumpyDatasets( input_1=np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]), output=np.array([[2.0], [4.0], [6.0], [8.0], [10.0]])), batch_size=100) } return datasets