Exemple #1
0
    def period_standardize(self, axis=None, dtype=None, ddof=1, period=None):
        """
    Standardizes data by substracting the average over a reference period,
    and by dividing by the standard deviation over the same period.
    

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1: 
    by default, the method returns the unbiased estimate of the standard deviation.
    
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self, period[0], period[1],
                                      include_edges=False)
        refavg = refdata.mean(axis=axis, dtype=dtype)
        refstd = refdata.std(axis=axis, dtype=dtype, ddof=ddof)
        if not axis:
            result = (self - refavg) * 1. / refstd
        else:
            result = (self - ma.expand_dims(refavg)).astype(float)
            result /= ma.expand_dims(refstd)
        return result
Exemple #2
0
    def period_std(self, axis=None, dtype=None, out=None, ddof=1,
                   period=None):
        """
    Returns the standard deviation over a reference period.
        
    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(out)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1:
    by default, the method returns the unbiased estimate of the standard deviation.

        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self, period[0], period[1],
                                      include_edges=False)
        return refdata.std(axis=axis, dtype=dtype, out=out, ddof=ddof)
Exemple #3
0
    def period_std(self, axis=None, dtype=None, out=None, ddof=1, period=None):
        """
    Returns the standard deviation over a reference period.
        
    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(out)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1:
    by default, the method returns the unbiased estimate of the standard deviation.

        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self,
                                      period[0],
                                      period[1],
                                      include_edges=False)
        return refdata.std(axis=axis, dtype=dtype, out=out, ddof=ddof)
Exemple #4
0
    def period_average(self, axis=None, dtype=None, out=None, period=None):
        """
    Returns the series averaged over the reference period, along the given axis.

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(out)s
    %(period)s
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self, period[0], period[1],
                                      include_edges=False)
        return refdata.mean(axis=axis, dtype=dtype, out=out)
Exemple #5
0
    def period_average(self, axis=None, dtype=None, out=None, period=None):
        """
    Returns the series averaged over the reference period, along the given axis.

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(out)s
    %(period)s
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self,
                                      period[0],
                                      period[1],
                                      include_edges=False)
        return refdata.mean(axis=axis, dtype=dtype, out=out)
Exemple #6
0
    def period_standardize(self, axis=None, dtype=None, ddof=1, period=None):
        """
    Standardizes data by substracting the average over a reference period,
    and by dividing by the standard deviation over the same period.
    

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1: 
    by default, the method returns the unbiased estimate of the standard deviation.
    
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self,
                                      period[0],
                                      period[1],
                                      include_edges=False)
        refavg = refdata.mean(axis=axis, dtype=dtype)
        refstd = refdata.std(axis=axis, dtype=dtype, ddof=ddof)
        if not axis:
            result = (self - refavg) * 1. / refstd
        else:
            result = (self - ma.expand_dims(refavg)).astype(float)
            result /= ma.expand_dims(refstd)
        return result