def test_calc_measure_scale_factor(self): current_value = 10 target_value = 100 current_value2 = 100 target_value2 = 9 assert_equal( TSEGeometry.calc_measure_scale_factor(current_value, target_value), 10.0) assert_equal( TSEGeometry.calc_measure_scale_factor(current_value2, target_value2), 0.09)
def test_calc_ssd_slow(self): # Create a sample test image that is empty. original_image = np.full((400, 400, 3), [0, 200, 0], dtype=np.uint8) # Calculate the scale factor (MAKING SURE TO SUBTRACT '1' from the max height/width to account for array index out of bounds issue) scale_factor_width = TSEGeometry.calc_measure_scale_factor(200, (400 - 1)) # Calculate the scaled indices to identify the pixels in the larger image that we will want to make GREEN to provide evidence for the test succeeding. original_image_scaled_indices = np.rint((np.arange(0, 200) * scale_factor_width)).astype(int) rows_cols_cartesian_product = np.hsplit(TSEDataUtils.calc_cartesian_product([original_image_scaled_indices, original_image_scaled_indices]), 2) rows_to_extract = rows_cols_cartesian_product[0].astype(int) cols_to_extract = rows_cols_cartesian_product[1].astype(int) # We now want to set each fo the pixels THAT WE EXPECT TO BE EXTRACTED BY THE TEST to GREEN to show that the test has passed. original_image[rows_to_extract, cols_to_extract] = [0, 200, 0] # Once we have performed the pixel extraction, we expect that all of the pixels returned will be GREEN (based ont he setup above) matching_image = np.full((200, 200, 3), [0, 200, 0], dtype=np.uint8) non_matching_image = np.full((200, 200, 3), [200, 0, 0], dtype=np.uint8) # Check that for perfectly matching images, we get a score of exactly 0. assert_equal(TSECImageUtils.calc_ssd_slow(matching_image, original_image, matching_image.shape[0], matching_image.shape[1], scale_factor_width, scale_factor_width), 0) # Check that for non-matching images, we get a score > 0. assert_true(TSECImageUtils.calc_ssd_slow(non_matching_image, original_image, matching_image.shape[0], matching_image.shape[1], scale_factor_width, scale_factor_width) > 0)
def test_calc_vec_magnitude(self): point_1 = (10, 20) point_2 = (50, 5) calculated_vector = ((point_2[0] - point_1[0]), (point_2[1] - point_1[1])) expected_result = math.sqrt((calculated_vector[0]**2) + (calculated_vector[1]**2)) assert_equal(TSEGeometry.calc_vec_magnitude(point_1, point_2), expected_result)
def test_scale_coordinate_relative_centre(self): origin_point = (0, 0) centre_point = (10, 10) scale_factor = 20 scaled_x = centre_point[0] + ( (origin_point[0] - centre_point[0]) * scale_factor) scaled_y = centre_point[1] + ( (origin_point[1] - centre_point[1]) * scale_factor) expected_result = (scaled_x, scaled_y) assert_equal( TSEGeometry.scale_coordinate_relative_centre( origin_point, centre_point, scale_factor), expected_result)
def test_calc_line_points(self): startpoint_1 = (75, 0) endpoint_1 = (0, 5) startpoint_2 = (225, 0) endpoint_2 = (300, 5) expected_origin_line_1 = [(75, 0), (60, 1), (45, 2), (30, 3), (15, 4), (0, 5)] expected_origin_line_2 = [(225, 0), (240, 1), (255, 2), (270, 3), (285, 4), (300, 5)] calculated_lines = TSEGeometry.calc_line_points( startpoint_1, endpoint_1, startpoint_2, endpoint_2, endpoint_2[1]) assert_true(np.array_equal(calculated_lines[0], expected_origin_line_1)) assert_true(np.array_equal(calculated_lines[1], expected_origin_line_2))
def test_calc_line_points_reflection(self): image_width = 300 image_x_centre = image_width / 2 origin_startpoint = (75, 0) origin_endpoint = (0, 5) expected_origin_line = [(75, 0), (60, 1), (45, 2), (30, 3), (15, 4), (0, 5)] expected_origin_line_reflected = [(225, 0), (240, 1), (255, 2), (270, 3), (285, 4), (300, 5)] calculated_lines = TSEGeometry.calc_line_points_horizontal_reflection( origin_startpoint, origin_endpoint, image_x_centre, origin_endpoint[1]) assert_true(np.array_equal(calculated_lines[0], expected_origin_line)) assert_true( np.array_equal(calculated_lines[1], expected_origin_line_reflected))
def test_calc_line_points_straight_line(self): startpoint_1 = (75, 0) endpoint_1 = (75, 5) startpoint_2 = (225, 0) endpoint_2 = (225, 5) expected_origin_straight_line_1 = [(75, 0), (75, 1), (75, 2), (75, 3), (75, 4), (75, 5)] expected_origin_straight_line_2 = [(225, 0), (225, 1), (225, 2), (225, 3), (225, 4), (225, 5)] calculated_straight_lines = TSEGeometry.calc_line_points( startpoint_1, endpoint_1, startpoint_2, endpoint_2, endpoint_2[1]) assert_true( np.array_equal(calculated_straight_lines[0], expected_origin_straight_line_1)) assert_true( np.array_equal(calculated_straight_lines[1], expected_origin_straight_line_2))
def test_scale_image_interpolation_man(self): original_image = np.full((200, 200, 3), [0, 200, 0], dtype=np.uint8) # Set the centre pixel fo the original image to a different colour for comparison once scaling is complete. original_image[100, 100] = [200, 0, 0] larger_target_image = np.zeros((400, 400, 3), dtype=np.uint8) # Calculate the scale factor based on the widths of the two images (as the width/height are equal, we can just use the width) scale_factor = TSEGeometry.calc_measure_scale_factor( original_image.shape[1], (larger_target_image.shape[1])) scaled_result = TSEImageUtils.scale_image_interpolation_man( original_image, scale_factor) # We would expect the centre pixel of the scaled image NOT to be GREEN, as in the original non-scaled image this was set to RED. assert_false(np.array_equal(scaled_result[200, 200], [0, 200, 0])) # We would expect all other pixels (apart from immediate neighbours around the centre pixel due to the interpolation) to still be GREEN. assert_true(np.array_equal(scaled_result[0, 0], [0, 200, 0])) assert_true(np.array_equal(scaled_result[399, 399], [0, 200, 0])) assert_true(np.array_equal(scaled_result[195, 195], [0, 200, 0])) assert_true(np.array_equal(scaled_result[205, 205], [0, 200, 0]))
def test_constructor(self): test_geometry = TSEGeometry() assert_true(test_geometry is not None)
def scan_search_window_scaling(self, template_patch, template_patch_origin, match_method, force_cont_search=False): image_height, image_width = self._hsv_img2.shape[:2] image_centre_x = math.floor(image_width / 2) template_patch_height, template_patch_width = template_patch.shape[:2] new_localised_window_height = image_height - template_patch_height best_score = -1 best_position = 0 stop = False last_width = template_patch_width prev_current_window_scaled_coords = None for i in range(template_patch_origin.y, new_localised_window_height): score = 0 if i >= (template_patch_origin.y + 1): last_width = self._calibration_lookup[i - 1] calibrated_patch_width = self._calibration_lookup[i] patch_half_width = math.floor(calibrated_patch_width / 2) scale_factor = TSEGeometry.calc_measure_scale_factor( last_width, calibrated_patch_width) if prev_current_window_scaled_coords is None: current_window_scaled_coords = TSEImageUtils.scale_image_roi_relative_centre( ((image_centre_x - patch_half_width), i), ((image_centre_x + patch_half_width), (i + template_patch_height)), scale_factor) else: # We add +1 to the 'Y' coordinate as we are moving the search window down the ROI by one pixel each time we increase the width. current_window_scaled_coords = TSEImageUtils.scale_image_roi_relative_centre( (prev_current_window_scaled_coords[0].x, prev_current_window_scaled_coords[0].y + 1), (prev_current_window_scaled_coords[1].x, prev_current_window_scaled_coords[1].y + 1), scale_factor) prev_current_window_scaled_coords = current_window_scaled_coords scaled_search_window = TSEImageUtils.extract_image_sub_window( self._hsv_img2, current_window_scaled_coords[0], current_window_scaled_coords[1]) if match_method.match_type == tse_match_methods.DISTANCE_ED: score = TSEImageUtils.calc_ed_template_match_score_scaled_compiled( template_patch, scaled_search_window) elif match_method.match_type == tse_match_methods.DISTANCE: score = TSEImageUtils.calc_template_match_compare_cv2_score_scaled( template_patch, scaled_search_window, match_method.match_id) elif match_method.match_type == tse_match_methods.HIST: scaled_template_patch = TSEImageUtils.scale_image_interpolation_auto( template_patch, scaled_search_window) score = TSEImageUtils.calc_compare_hsv_histogram( scaled_template_patch, scaled_search_window, match_method.match_id) # If lower score means better match, then the method is a 'reverse' method. if match_method.reverse_score: if best_score == -1 or score < best_score: best_score = score best_position += 1 else: stop = True else: if best_score == -1 or score > best_score: best_score = score best_position += 1 else: stop = True if (force_cont_search is False) and (stop is True): break # We need to return the 'Y' with the best score (i.e. the displacement) return best_position