Exemple #1
0
    def __init__(self, coords, temp, alpha, stopping_temp, stopping_iter):
        ''' animate the solution over time

            Parameters
            ----------
            coords: array_like
                list of coordinates
            temp: float
                initial temperature
            alpha: float
                rate at which temp decreases
            stopping_temp: float
                temerature at which annealing process terminates
            stopping_iter: int
                interation at which annealing process terminates

        '''

        self.coords = coords
        self.sample_size = len(coords)
        self.temp = temp
        self.alpha = alpha
        self.stopping_temp = stopping_temp
        self.stopping_iter = stopping_iter
        self.iteration = 1

        self.dist_matrix = tsp_utils.vectorToDistMatrix(coords)
        self.curr_solution = tsp_utils.nearestNeighbourSolution(
            self.dist_matrix)
        self.best_solution = self.curr_solution

        self.solution_history = [self.curr_solution]

        self.curr_weight = self.weight(self.curr_solution)
        self.initial_weight = self.curr_weight
        self.min_weight = self.curr_weight

        self.weight_list = [self.curr_weight]

        self.acceptance_probability_list = []
        self.temperature_list = [self.temp]

        self.random_solution = tsp_utils.randomSolution(self.dist_matrix)
        self.random_weight = self.weight(self.random_solution)
        print
        print "Random: ", self.random_weight
        print
        print "Greedy: ", self.curr_weight
        print
Exemple #2
0
    def __init__(self,
                 adjacency_matrix,
                 temp=-1,
                 alpha=-1,
                 stopping_temp=-1,
                 stopping_iter=-1):
        ''' animate the solution over time

            Parameters
            ----------
            coords: array_like
                list of coordinates
            temp: float
                initial temperature
            alpha: float
                rate at which temp decreases
            stopping_temp: float
                temerature at which annealing process terminates
            stopping_iter: int
                interation at which annealing process terminates

        '''

        self.adjacency_matrix = adjacency_matrix
        self.sample_size = len(adjacency_matrix)
        self.temp = math.sqrt(self.sample_size) if temp == -1 else temp
        self.alpha = 0.995 if alpha == -1 else alpha
        self.stopping_temp = 1e-8 if stopping_temp == -1 else stopping_temp
        self.stopping_iter = 200000 if stopping_iter == -1 else stopping_iter
        self.iteration = 1

        self.dist_matrix = adjacency_matrix
        self.curr_solution = tsp_utils.nearestNeighbourSolution(
            self.dist_matrix)
        self.best_solution = self.curr_solution

        self.solution_history = [self.curr_solution]

        self.curr_weight = self.weight(self.curr_solution)
        self.initial_weight = self.curr_weight
        self.min_weight = self.curr_weight

        self.weight_list = [self.curr_weight]

        print('Intial weight: ', self.curr_weight)