Exemple #1
0
 def Get_5_10_20_data(self, code, start, end):
     data_5_data = ts.get_hist_data(code, start=start, end=end)
     #防止过多拉取数据源 网站屏蔽IP
     cons = ts.get_apis()
     # 增加前复权 adj='qfq' 后复权 adj='hfq'(bob_jie : 2017-11-01)
     data_5_data = ts.bar(code,
                          conn=cons,
                          start_date=start,
                          adj='qfq',
                          end_date=end,
                          ma=[5, 10, 20],
                          factors=['vr', 'tor'])
     try:
         data_5_data.values[0][0]
     except Exception as e:
         time.sleep(2)
         #防止过多拉取数据源 网站屏蔽IP
         cons = ts.get_apis()
         # 增加前复权 adj='qfq' 后复权 adj='hfq'(bob_jie : 2017-11-01)
         data_5_data = ts.bar(code,
                              conn=cons,
                              start_date=start,
                              adj='qfq',
                              end_date=end,
                              ma=[5, 10, 20],
                              factors=['vr', 'tor'])
     ts.get_h_data('002337', autype='qfq')
     Mysql().SaveMySqlTWO(data_5_data, 'Stock_Basics_Info_All',
                          code + 'stock_basics', code)
Exemple #2
0
def tushare_bar(code, start, end, freq, **kwargs):
    df = ts.bar(code=code, conn = ts.get_apis(), start_date = start, end_date = end, \
            freq = freq, asset='E', adj = 'qfq', **kwargs)
    if isinstance(df, pd.DataFrame):
        return df
    else:
        raise TypeError('df is unknown type %s' % type(df))
Exemple #3
0
def stock_plot():
    left, width = 0.1, 0.8
    rect_vol = [left, 0.1, width, 0.3]
    rect_main = [left, 0.4, width, 0.5]
    fig = plt.figure()
    conn = ts.get_apis()
    df = ts.bar('300333', conn=conn, start_date='2018-01-01')
    del df['code']
    df.reset_index(inplace=True)
    dates = df['datetime'].values

    df['datetime'] = df['datetime'].map(mdates.date2num)
    # dates=df['datetime'].values
    vol = df['vol'].values
    ax_vol = fig.add_axes(rect_vol)
    ax_vol.fill_between(dates, vol, color='y')
    # 横坐标时间旋转
    plt.setp(ax_vol.get_xticklabels(),
             rotation=30,
             horizontalalignment='right')
    ax_main = fig.add_axes(rect_main)
    candlestick_ochl(ax_main, df.values, width=0.6, colordown='g', colorup='r')
    ax_main.axes.get_xaxis().set_visible(False)
    ax_main.set_title("STOCK LINE")

    ts.close_apis(conn)
    plt.show()
Exemple #4
0
def stock_plot():
    left, width = 0.1, 0.8
    rect_vol = [left, 0.1, width, 0.3]
    rect_main = [left, 0.4, width, 0.5]
    fig = plt.figure()
    conn = ts.get_apis()
    df = ts.bar('300333', conn=conn, start_date='2018-01-01')
    del df['code']
    df.reset_index(inplace=True)
    dates=df['datetime'].values

    df['datetime'] = df['datetime'].map(mdates.date2num)
    # dates=df['datetime'].values
    vol = df['vol'].values
    ax_vol = fig.add_axes(rect_vol)
    ax_vol.fill_between(dates, vol,color = 'y')
    # 横坐标时间旋转
    plt.setp(ax_vol.get_xticklabels(), rotation=30, horizontalalignment='right')
    ax_main = fig.add_axes(rect_main)
    candlestick_ochl(ax_main,df.values,width=0.6,colordown='g',colorup='r')
    ax_main.axes.get_xaxis().set_visible(False)
    ax_main.set_title("STOCK LINE")

    ts.close_apis(conn)
    plt.show()
Exemple #5
0
def fetch_kdata_lazy(code, asset, freq, end_date=''):
    # global在第一行声明,养成好习惯
    global cons
    start_date = get_date_max(code, asset, freq) + relativedelta(minutes=1)
    if isinstance(end_date, datetime.datetime):
        end_date_str = end_date.strftime(DT_FMT).replace(
            "11:30:00", "13:00:00")
        end_date = datetime.datetime.strptime(end_date_str, DT_FMT)
    kdata = ts.bar(code,
                   conn=cons,
                   asset=asset,
                   adj='qfq',
                   freq=freq,
                   start_date=start_date,
                   end_date=end_date)
    result = 0
    try:
        result = insert_kdata(asset, freq, kdata)
    except pymongo.errors.BulkWriteError as err:
        logger.error(err)
    except StockError as err:
        logger.error(err)
    except TypeError as e:
        cons = ts.get_apis()
        logger.error(e)
    except Exception as e:
        logger.error(e)
    return result
 def __bar(self):
     self.data_frame = ts.bar(code=self.code,
                              conn=TushareConn.conn,
                              start_date=self.start,
                              end_date=self.end,
                              freq=self.freq,
                              asset=self.asset)
Exemple #7
0
def plot_stock_line(code, name, table_name, start='2017-10-01', save=False):
    today = datetime.datetime.now().strftime('%Y-%m-%d')
    title = u'{} {} {} {}'.format(today, code, name, table_name)
    if os.path.exists(title + '.png'):
        return
    engine = get_engine('db_stock', local=True)

    fig = plt.figure(figsize=(10, 8))
    base_info = pd.read_sql('tb_basic_info', engine, index_col='index')
    # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10))
    ax = fig.add_axes([0, 0.3, 1, 0.55])
    ax2 = fig.add_axes([0, 0.1, 1, 0.25])
    if code is None and name is not None:
        code = base_info[base_info['name'] == name]['code'].values[0]
        print code
    df = None
    for _ in range(4):
        api = ts.get_apis()

        try:
            df = ts.bar(code, conn=api, start_date=start)
            break
        except Exception, e:
            print e
            ts.close_apis(api)
            time.sleep(random.random() * 3)
            continue
def write_all_stock(allAshare, lib=None):
    """
    :param allAshare: List,所有股票
    :param lib: arctic.store.version_store.VersionStore
    
    :return: succ: List, written stocks; fail: List, failed written stocks  
    """
    succ = []
    fail = []
    cons = ts.get_apis()
    if not os.path.exists(hqdir):
        os.mkdir(hqdir)

    for symbol in allAshare:
        try:
            df = ts.bar(symbol, cons, freq='D', start_date='',
                        end_date='').sort_index(ascending=True)
            if MONGO and lib:
                lib.write(symbol, df, metadata={'source': 'Tushare'})
            if CSV:
                df.to_csv(os.path.abspath("{}/{}.csv".format(hqdir, symbol)))
            print(symbol + '写入完成')
            succ.append(symbol)
        except Exception as e:
            fail.append(symbol)
            print("Failed for ", symbol, str(e))
        sleep(0.1)

    if SFL:
        write_list(succ, os.path.abspath('./hq_succ_list.txt'))
        write_list(fail, os.path.abspath('./hq_fail_list.txt'))
Exemple #9
0
def downMinuteBarBySymbol(symbol):
    """下载某一合约的分钟线数据"""
    start = time()

    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)  # 添加索引
    cons = ts.get_apis()

    df = ts.bar(symbol,
                cons,
                start_date='2018-01-10',
                end_date='2018-04-09',
                freq='1min',
                asset='X')
    df = df.sort_index()

    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)

    end = time()
    cost = (end - start) * 1000

    print u'合约%s数据下载完成%s - %s,耗时%s毫秒' % (symbol, df.index[0], df.index[-1],
                                         cost)
Exemple #10
0
def downMinuteBarBySymbol(symbol, freq):
    """下载某一合约的分钟线数据"""
    start = time()

    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)  # 添加索引

    df = ts.bar(symbol, ts.get_apis(), freq=freq, asset='X')
    #df = ts.bar(symbol, ktype='1min')
    df = df.sort_index()

    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        #有的合约字母变成大写,可以自己放开这个地方
        #d['symbol'] = d['symbol'].lower()

        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)

    end = time()
    cost = (end - start) * 1000

    print u'合约%s数据下载完成%s - %s,耗时%s毫秒' % (symbol, df.index[0], df.index[-1],
                                         cost)
Exemple #11
0
def get_close_price(code, start, end=datetime.today(), freq='D'):
    if (asset_category(code) == 'FUND_TRADED' or asset_category(code) == 'FUND_UNTRADED'):
        try:
            f = fp_prefix + code + '.csv'
            if (asset_category(code) == 'FUND_TRADED'): col_name = '收盘价'
            if (asset_category(code) == 'FUND_UNTRADED'): col_name = '净值'
            close_price = pd.read_csv(f, header=0, sep=',',
                                      converters={'交易时间': lambda x: datetime.strptime(x, '%Y-%m-%d')}, index_col='交易时间',
                                      usecols=['交易时间', col_name])
        except:
            print('Cannot find {}.\n'.format(f))
    else:
        if (asset_category(code) == 'A'): asset = 'E'
        if (asset_category(code) == 'HK'): asset = 'X'
        if (asset_category(code) == 'XSB'): asset = 'X'
        if (asset_category(code) == 'INDEX'): asset = 'INDEX'
        try:
            #cons = ts.get_apis()
            s = ts.bar(code, conn=cons, freq='D', start_date=start, end_date=end, asset=asset)
            close_price = s['close']
        except:
            print('Error when get price of {}.\n'.format(code))

    close_price = close_price.sort_index(ascending='ascending')

    if (freq == 'Y' or freq == 'END'):
        close_price = close_price.iloc[[0, -1]]

    return close_price
Exemple #12
0
def collect_single_index_daily_from_ts(code,
                                       table_name='index_k_data_60m',
                                       conn=None):
    start = (datetime.now() - timedelta(5)).strftime(
        datetime_utils.DATE_FORMAT)

    try:
        data = ts.bar(conn=conn,
                      code=code,
                      freq='60min',
                      asset="INDEX",
                      start_date=start,
                      retry_count=10)

        data.rename(columns={'vol': 'volume'}, inplace=True)
        data = data.drop(columns=['amount'])
        data['date'] = data.index
        data['pre_close'] = data['close'].shift(-1)
        data = data.head(4)
        data.to_sql(table_name,
                    dataSource.mysql_quant_engine,
                    if_exists='append',
                    index=False)
    except Exception as e:
        logger.error(e)
Exemple #13
0
def fetch_code(code='000001'):
    df = ts.bar(code=code, conn=cons, freq=freq, start_date=start_date, end_date=end_date, ma=ma)
    columns = ['close', 'high', 'low', 'open', 'vol', 'amount', 'ma5', 'ma10', 'ma20', 'ma30', 'ma60']
    df = df.loc[:, columns]
    df = df.sort_index(axis=0, ascending=True)
    df.to_csv('data/code.csv')
    return df
Exemple #14
0
def plot_stock_line(code,start):
    fig = plt.figure(figsize=(10,15))
    # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10))
    ax=fig.add_axes([0,0.2,1,0.5])
    ax2=fig.add_axes([0,0,1,0.2])
    df = ts.bar(code,conn=api,start_date=start)
    # df=df.sort_values(by='datetime')
    df = df.sort_index()
    df =df.reset_index()
    # df = ts.get_k_data('300141',start='2018-03-01')
    # df['date']=df['date'].dt.strftime('%Y-%m-%d')
    df['datetime']=df['datetime'].dt.strftime('%Y-%m-%d')
    sma5=talib.SMA(df['close'].values,5)
    sma20=talib.SMA(df['close'].values,20)
    # ax.set_xticks(range(0,len(df),20))
    # # ax.set_xticklabels(df['date'][::5])
    # ax.set_xticklabels(df['datetime'][::20])
    candlestick2_ochl(ax,df['open'],df['close'],df['high'],df['low'],width=0.5,colorup='r',colordown='g',alpha=0.6)
    # ax.set_title(code)
    ax.plot(sma5)
    ax.plot(sma20)


    # df['vol'].plot(kind='bar')
    volume_overlay(ax2,df['open'],df['close'],df['vol'],width=0.5,alpha=0.8,colordown='g',colorup='r')
    ax2.set_xticks(range(0,len(df),20))
    # ax.set_xticklabels(df['date'][::5])
    ax2.set_xticklabels(df['datetime'][::20])
    # ax2.grid(True)

    # plt.setp(ax.get_xticklabels(), rotation=30, horizontalalignment='right')
    # plt.grid(True)
    # plt.subplots_adjust(hspace=0)
    plt.show()
Exemple #15
0
def insert_kdata(code, asset, freq, start, end):
    sheet = get_sheet(freq)
    cons = ts.get_apis()
    k_data = ts.bar(code,
                    conn=cons,
                    freq='5min',
                    start_date='2016-01-01',
                    end_date='',
                    asset=asset)
    # 对DataFrame的个别列进行重命名
    k_data = k_data.rename(columns={'code': 'code_origin'})
    # 代码
    k_data['code'] = code
    # 周期
    k_data['freq'] = freq
    # 是否指数
    k_data['asset'] = asset
    k_data = k_data[[
        'code', 'index', 'date', 'ktype', 'open', 'close', 'high', 'low',
        'volume', 'code_origin'
    ]]
    # inplace默认为False,如果该值为False,那么原来的pd顺序没变,只是返回的是排序的
    k_data.sort_values("date", ascending=False, inplace=True)
    records = pandas.io.json.loads(k_data.T.to_json()).values()
    global insert_result
    insert_result = sheet.insert_many(records, ordered=False)
    # except BulkWriteError as e:
    #     print("insert_many出现重复,忽略错误")
    return insert_result
 def __ma(self):
     self.data_frame_ma = ts.bar(code=self.code,
                                 conn=TushareConn.conn,
                                 start_date=self.start,
                                 end_date=self.end,
                                 freq=self.freq,
                                 ma=self.ma)
Exemple #17
0
def get_bar_realtime_code():
    ap = ts.get_apis()
    data = ts.bar('600570',
                  ap,
                  start_date='20190516',
                  end_date='20190517',
                  freq='1min')
    # if os.path.exists(filename):
    #     data.to_csv(
    #         filename,
    #         mode='a',
    #         header=False,
    #         encoding='utf-8',
    #         na_rep='NA')
    # else:
    #     data.to_csv(filename, encoding='utf-8', na_rep='NA')
    # pcolumns = data.columns
    # pindex = data.index
    # pdata = data[data.columns[0:10]]
    # pdata2 = data['首字符'] = data['code'].str[0:1]
    data['datetime'] = data.index
    # ps = data['time']
    # print(ps)
    # print(type(data.index))
    # data['time'] = pd.to_datetime(data['time'], format='%d.%m.%Y')
    # pddata =  data.loc[-1] = ptime
    # data.loc[data['首字符'] == '6', '市场'] = '1'
    # ss = data.to_json(orient='split')
    content = data_to_json(data)
    # resp = Response_headers(content)
    return content
def GetstockData(code,start,end=None):
    api=ts.get_apis()
    if not end:
        end = datetime.datetime.now().strftime('%Y-%m-%d')
        print(end)
    df = ts.bar(code,conn=api,freq='D',start_date=start,end_date=end)
    df.to_excel('data/'+code+'.xls')
Exemple #19
0
def fetch(code_list):
    tsconn = ts.get_apis()
    sqlconn = db.connect()
    cursor = sqlconn.cursor()

    try:
        for code in code_list:
            try:
                data = ts.bar(code,
                              conn=tsconn,
                              start_date="1970-01-01",
                              freq="5min")

                count = data.shape[0]
                i = 0

                for index, row in data.iterrows():
                    cursor.execute(
                        "insert into stock_price (code, time, price) values (%s, %s, %s)",
                        (code, str(index), float(row["close"])))
                    i += 1
                    if i % 1000 == 0:
                        print("{0} {1}%".format(code, int(i / count * 100)))

                sqlconn.commit()
                print("done")

            except IOError as err:

                print(code)
                print(err)

    finally:
        sqlconn.close()
        ts.close_apis(tsconn)
Exemple #20
0
def downBarBySymbol(symbol, start_date=None, end_date=None, freq='D'):
    """下载某一合约的分钟线数据"""
    start = time()
    
    db_freq = freq
    #if freq[0] in ['0', '1', '2','3','4','5','6','7','8','9']:
        #db_freq = freq + 'MIN'
    
    db = mc[DB_NAME_DICT[db_freq]]                         # 数据库
    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)         # 添加索引


    if generateExchange(symbol)=="QH":
        asset = 'X'
    else:
        asset = 'E'
        
    asset = 'INDEX'    
    df = ts.bar(symbol, conn=ts.get_apis(), freq=freq, asset=asset, start_date=start_date, end_date=end_date, adj='qfq')
    #df = ts.get_hist_data(symbol,start=start_date, end=end_date, ktype=freq)
    
    df = df.sort_index()
    
    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)            

    end = time()
    cost = (end - start) * 1000

    print u'合约%s 周期%s数据下载完成%s - %s,耗时%s毫秒' %(symbol, freq, df.index[0], df.index[-1], cost)
Exemple #21
0
def get_of_bar(code, conn, freq, start, end):
    df = ts.bar(code=code,
                conn=conn,
                freq=freq,
                start_date=start,
                end_date=end)
    return df
Exemple #22
0
    def get_k_frame(cls, con, code):
        k_df = tushare.bar(code, con, adj='qfq')
        k_df_size = k_df.index.size
        if not k_df_size: return k_df

        k_df['high'] = pandas.to_numeric(k_df['high'])
        k_df['low'] = pandas.to_numeric(k_df['low'])
        k_df['open'] = pandas.to_numeric(k_df['open'])
        k_df['close'] = pandas.to_numeric(k_df['close'])
        k_df['date'] = k_df.index
        k_df['date'] = k_df['date'].apply(lambda x: datetime.datetime.strftime(x, "%Y-%m-%d"))

        k_df = k_df.drop(['vol', 'amount'], axis=1)
        k_df = k_df.reset_index(drop=True)
        k_df = k_df.sort_values(by='date').reset_index(drop=True)
        k_df['k_pos'] = k_df.index

        def _get_per_change(x):
            if x == 0:
                _pc = (k_df.at[0, "close"] - k_df.at[0, "open"]) / k_df.at[0, "open"] * 100
            else:
                _pc = (k_df.at[x, "close"] - k_df.at[x-1, "close"]) / k_df.at[x-1, "close"] * 100
            return float("%0.2f" % _pc)

        k_df["per_change"] = k_df.k_pos.apply(_get_per_change)

        return k_df
def isXR(code=""):
    global cons
    shi_jian = gsd.get_code_min_shi_jian(code)

    if shi_jian == "None":
        return False

    data = gsd.get_stock_data_daily_df_time(code=code,
                                            start=shi_jian,
                                            end=shi_jian)
    price = data["price"].values[0]

    tsFaile = 1

    while tsFaile != 0:
        try:

            #             print(code,shi_jian)

            #             if tsFaile >=2 :
            #                 cons = ts.get_apis()

            data = ts.bar(code,
                          conn=cons,
                          adj='qfq',
                          start_date=shi_jian,
                          end_date=shi_jian,
                          retry_count=2)
            #             print("data",data)
            '''
            if len(data["close"].values)<1 :
                tsFaile += 1 
            else:
                tsFaile = 0
            '''
            tsFaile = 0
            if len(data["close"].values) < 1:
                return False
        except Exception as e:
            #获取连接备用
            ts.close_apis(conn=cons)
            cons = ts.get_apis()
            print(code, shi_jian, "isXR fail:", tsFaile, e)
            time.sleep(5)
            if tsFaile <= 3:
                tsFaile += 1
            else:
                return False


#     print(code,shi_jian)
#     data  = ts.bar(code, conn=cons, adj='qfq', start_date=shi_jian, end_date=shi_jian,retry_count = 20)
#     print("data",data)
    close = data["close"].values[0]

    if price == close:
        return False
    else:
        return True
Exemple #24
0
def store_data():
    code = '600050'
    conn = ts.get_apis()
    file_name = os.path.join(data_path, code + '.xls')
    df = ts.bar(code, conn=conn, start_date='2015-01-01')
    # print(df.head(10))
    print(file_name)
    df.to_excel(file_name)
Exemple #25
0
def get_index(symbol):
    cons = ts.get_apis()
    return ts.bar(symbol,
                  cons,
                  freq='D',
                  start_date='',
                  end_date='',
                  asset='INDEX').sort_index(ascending=True)
def store_data():
    code = '600050'
    conn = ts.get_apis()
    file_name = os.path.join(data_path, code + '.xls')
    df = ts.bar(code, conn=conn, start_date='2015-01-01')
    # print(df.head(10))
    print(file_name)
    df.to_excel(file_name)
Exemple #27
0
 def get_hist_data(self,code,name,start_data):
     try:
         start_data = datetime.datetime.strptime(str(start_data), '%Y%m%d').strftime('%Y-%m-%d')
         df = ts.bar(code,conn=conn,start_date=start_data,adj='qfq')
         print df
     except Exception,e:
         print e
         return
Exemple #28
0
 def get_hist_data(self, code, name, start_data):
     try:
         start_data = datetime.datetime.strptime(str(start_data), '%Y%m%d').strftime('%Y-%m-%d')
         df = ts.bar(code, conn=conn, start_date=start_data, adj='qfq')
         print df
     except Exception, e:
         print e
         return
Exemple #29
0
def download():
    cons = ts.get_apis()
    df = ts.bar('ifl9',
                conn=cons,
                asset='X',
                start_date='2017-6-24',
                end_date='')
    df1 = df[['close']]
    df1.to_excel('c:/if.xlsx')
def get_hs300_last_date_online(freq='d'):
    conn = ts.get_apis()
    benchmark = ts.bar('000300', conn=conn, asset='INDEX', freq=freq)
    ts.close_apis(conn)
    if benchmark is None:
        return None, None
    last_date0 = benchmark.index[0].strftime('%Y-%m-%d')
    last_date1 = benchmark.index[1].strftime('%Y-%m-%d')
    return last_date0, last_date1
Exemple #31
0
 def get_trading_days(cls,
                      start=None,
                      end=None,
                      ndays=None,
                      ascending=True):
     """
     取得交易日列表,分三种方式取得
     (1)指定开始、结束日期,即start和end不为None,此时忽略参数ndays
     (2)指定开始日期和天数,即start和ndays不为None,而end为None
     (3)指定结束日期和天数,即end和ndays为None,而start为None
     --------
     :param start: datetime-like or str
         开始日期,格式:YYYY-MM-DD
     :param end: datetime-like or str
         结束日期,格式:YYYY-MM-DD
     :param ndays: int
         交易日天数
     :param ascending: bool,默认True
         是否升序排列
     :return:
     --------
         Series of pandas.Timestamp,交易日列表,默认按交易日升序排列
     """
     if len(Utils.utils_trading_days) == 0:
         ts_conn = ts.get_apis()
         df_SZZS = ts.bar(code='000001', conn=ts_conn, asset='INDEX')
         ts.close_apis(ts_conn)
         Utils.utils_trading_days = Series(df_SZZS.index).sort_values()
     if start is not None:
         start = cls.to_date(start)
     if end is not None:
         end = cls.to_date(end)
     if start is not None and end is not None:
         trading_days = Utils.utils_trading_days[
             (Utils.utils_trading_days >= start)
             & (Utils.utils_trading_days <= end)]
     elif start is not None and ndays is not None:
         trading_days = Utils.utils_trading_days[
             Utils.utils_trading_days >= start].iloc[:ndays]
     elif end is not None and ndays is not None:
         trading_days = Utils.utils_trading_days[
             Utils.utils_trading_days <= end].iloc[-ndays:]
     elif start is not None:
         trading_days = Utils.utils_trading_days[
             Utils.utils_trading_days >= start]
     elif end is not None:
         trading_days = Utils.utils_trading_days[
             Utils.utils_trading_days <= end]
     elif ndays is not None:
         trading_days = Utils.utils_trading_days.iloc[-ndays:]
     else:
         trading_days = Utils.utils_trading_days
     trading_days = trading_days.reset_index(drop=True)
     if not ascending:
         trading_days = trading_days.sort_values(ascending=False)
     return trading_days
    def store(self, code, start_date):
        #print code,start_date
        try:
            print code
            print start_date
            df = ts.bar(code=code, conn=self.cons,start_date=start_date)

        except Exception,e:
            print e
            return
Exemple #33
0
def fetch_kdata(code, asset, freq):
    start_date = get_start_date(freq)
    kdata = ts.bar(code,
                   conn=cons,
                   asset='INDEX',
                   adj='qfq',
                   freq=freq,
                   start_date=start_date,
                   end_date='')
    return insert_kdata(asset, freq, kdata)
Exemple #34
0
    def store(self, code, start_date):
        #print code,start_date
        try:
            print code
            print start_date
            df = ts.bar(code=code, conn=self.cons,start_date=start_date)

        except Exception,e:
            print e
            return
Exemple #35
0
 def _data(self, symbol, start_date='', end_date=''):
     try:
         conn = self._get_server()
         df = ts.bar(symbol, conn=conn, freq='5min')
         df = df.reset_index(inplace=True)
         df = df[['datetime', 'open', 'close', 'high', 'low', 'volume', 'code']]
         self.data = self.data.append(df, ignore_index=True) 
         return df
     except:
         return None
def PreClose(L):
    ClosePrice = OrderedDict()
    for i in L:
        ClosePrice[i] = ts.bar(i,
                               conn=cons,
                               freq='D',
                               asset='E',
                               start_date=Today,
                               end_date='').close
    return ClosePrice
Exemple #37
0
    def store(self, code, start_date):
        #print(code,start_date)
        try:
            df = ts.bar(code=code, conn=self.cons,start_date=start_date)

        except Exception as e:
            print(e)
            return
        try:
            df.to_sql(code, self.engine)
        except Exception as e:
            print(e)
            return
Exemple #38
0
def stock_line():
    api = ts.get_apis()
    df = ts.bar('300141', conn=api, start_date='2018-01-01')
    # print(df)
    del df['code']
    df.reset_index(inplace=True)
    print(df)
    df['datetime'] = df['datetime'].map(mdates.date2num)
    ax1 = plt.subplot2grid((6, 1), (0, 0), rowspan=5)
    ax2 = plt.subplot2grid((6, 1), (5, 0), rowspan=5, sharex=ax1)
    ax1.xaxis_date()
    candlestick_ochl(ax1, df.values, width=1, colorup='r', colordown='g')
    # ax2.fill_between(ax1,df['vol'].values,0)
    plt.show()
    ts.close_apis(api)
Exemple #39
0
    def get_hist_data(self, code, name, start_data):
        try:
            start_data = datetime.datetime.strptime(str(start_data), '%Y%m%d').strftime('%Y-%m-%d')
            df = ts.bar(code, conn=conn, start_date=start_data, adj='qfq')
            print(df)
        except Exception as e:
            print(e)
            return

        df.insert(1, 'name', name)
        df = df.reset_index()
        try:
            df.to_sql(code, engine, if_exists='append')
        except Exception as e:
            print(e)
Exemple #40
0
def get_hist_data(code, name, start_data):
    try:
        # start_data = datetime.datetime.strptime(str(start_data), '%Y%m%d').strftime('%Y-%m-%d')

        df = ts.bar(code, conn=conn, start_date=start_data, adj='qfq')
    except Exception as e:
        print(e)
        return
    hist_con = get_engine('history')
    df.insert(1, 'name', name)
    df = df.reset_index()
    #print(df)
    df2=pd.read_sql_table(code,hist_con,index_col='index')
    try:
        new_df = pd.concat([df,df2])
        new_df = new_df.reset_index(drop=True)
        new_df.to_sql(code, engine, if_exists='replace')
    except Exception as e:
        print(e)
        return
Exemple #41
0
def downMinuteBarBySymbol(symbol):
    """下载某一合约的分钟线数据"""
    start = time()

    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)         # 添加索引
    
    df = ts.bar(symbol, freq='1min')
    df = df.sort_index()
    
    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)            

    end = time()
    cost = (end - start) * 1000

    print(u'合约%s数据下载完成%s - %s,耗时%s毫秒' %(symbol, df.index[0], df.index[-1], cost))
def ban_share(code,name):
    conn =ts.get_apis()
    year_2017 = [2629.218,3970.902,2083.032,1720.327,1999.456,1771.074,2417.082,2904.992,2910.946,2971.483,2350.122,3874.328]
    df = ts.bar(code, conn=conn, freq='M', start_date='2016-12-30', end_date='2017-11-01', asset='INDEX')
    series = df['close']
    '''
    diff_series=[]
    print series
    l = len(series)
    for i in range(l-1):
        print series[i]
        d= series[i]-series[i+1]
        diff_series.append(d)
    #print len(diff_series)
    '''

    #s2=Series(series)
    s2=series[:len(series)-1]
    s3 = s2.sort_index(ascending=True)
    #print s3
    s1 = Series(year_2017[0:len(s3)])
    s3=s3.reset_index(drop=True)
    #print s3
    #print s1
    cor = s3.corr(s1)
    #print len(s3)
    #print len(s1)
    print cor
    plt.figure()
    plt.subplot(2,1,1)
    s1.plot()
    plt.subplot(2,1,2)
    s3.plot(title=name)
    plt.show()

    if abs(cor) >0.5:
        print 'Great factor: ',code
Exemple #43
0
import json
import pandas as pd
import pymongo
import time
from ggplot import *
import tushare as ts

cons = ts.get_apis()
hs300 = ts.bar('000300', conn=cons, asset='INDEX', start_date='', end_date='')
hs300 = hs300.reset_index();
#print(hs300.head(5));
firstopen = hs300.iloc[-1].values[2];
#print(firstopen);
hs300['value'] = hs300['open']/firstopen;
hs300['time'] = hs300['datetime'];
del hs300['datetime'];
del hs300['open'];
del hs300['close'];
del hs300['high'];
del hs300['low'];
del hs300['vol'];
del hs300['amount'];
#print(hs300.head(5));



client = pymongo.MongoClient('localhost', 27017)

#基金
fddb = client.fddb;
Exemple #44
0
def plot_stock_line(api,code, name, table_name, current, start='2017-10-01', save=False):
    title = '{} {} {} {}'.format(current, code, name, table_name)
    title = title.replace('*', '_')


    if os.path.exists(title + '.png'):
        return



    if code is None and name is not None:
        code = base_info[base_info['name'] == name]['code'].values[0]

    df = None
    for _ in range(4):

        try:
            df = ts.bar(code, conn=api, start_date=start)

        except Exception as e:
            logger.info(e)
            ts.close_apis(api)
            time.sleep(random.random() * 30)
            api = ts.get_apis()

        else:
            break

    if df is None:
        return

    df = df.sort_index()

    if name is None:
        name = base_info[base_info['code'] == code]['name'].values[0]

    df = df.reset_index()
    df['datetime'] = df['datetime'].dt.strftime('%Y-%m-%d')
    sma5 = talib.SMA(df['close'].values, 5)
    sma20 = talib.SMA(df['close'].values, 10)
    # ax.set_xticks(range(0,len(df),20))
    # # ax.set_xticklabels(df['date'][::5])
    # ax.set_xticklabels(df['datetime'][::20])
    fig = plt.figure(figsize=(10, 8))
    # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10))
    ax = fig.add_axes([0, 0.3, 1, 0.50])
    ax2 = fig.add_axes([0, 0.1, 1, 0.20])

    candlestick2_ochl(ax, df['open'], df['close'], df['high'], df['low'], width=1, colorup='r', colordown='g',
                      alpha=0.6)
    ax.grid(True)
    ax.set_title(title)
    ax.plot(sma5, label='MA5')
    ax.legend()
    ax.plot(sma20, label='MA20')
    ax.legend(loc=2)
    ax.grid(True)
    # df['vol'].plot(kind='bar')
    volume_overlay(ax2, df['open'], df['close'], df['vol'], width=1, alpha=0.8, colordown='g', colorup='r')
    ax2.set_xticks(range(0, len(df), 5))
    # ax.set_xticklabels(df['date'][::5])
    ax2.set_xticklabels(df['datetime'][::5])
    plt.setp(ax2.get_xticklabels(), rotation=30, horizontalalignment='right')
    ax2.grid(True)
    plt.subplots_adjust(hspace=0.3)

    if save:
        # path = os.path.join(os.path.dirname(__file__),'data',today)
        fig.savefig(title + '.png')
    else:
        plt.show()

    plt.close()
Exemple #45
0
#中证500
#dt = ts.get_zz500s()
#print(dt);

#上证50
#print(ts.get_sz50s());

#沪深300
#print(ts.get_hs300s());


#获取连接备用

cons = ts.get_apis()
df = ts.bar('000300', conn=cons, asset='INDEX', start_date='', end_date='')
df = df.reset_index();
df['value'] = df['open']/2000;
print(df.head(5));
print(df.dtypes);

df1 = ts.bar('000016', conn=cons, asset='INDEX', start_date='', end_date='')
df1 = df1.reset_index();
df1['value'] = df1['open']/2000;
df1['odc'] = df1['open']>df1['close'];

df = pd.concat([df,df1]);
'''
df1 = ts.bar('000905', conn=cons, asset='INDEX', start_date='2016-01-01', end_date='')
df1 = df1.reset_index();
df1['odc'] = df1['open']>df1['close'];
Exemple #46
0
import tushare as ts

# 0. 获取连接备用
# [](http://mp.weixin.qq.com/s/RhGgTEVHqm8aDh2ZzpLviA)
cons = ts.get_apis()


# 1. 股票日线行情
df = ts.bar('600000', conn=cons, freq='D', start_date='2016-01-01', end_date='')
df.head(5)

# 2. 带因子的行情
# ma=[5, 10, 20, 60] 表示一次性获得5/10/20/60日均线
# factors=[‘vr’, ‘tor’],vr表示量比,tor表示换手率
df = ts.bar('600000', conn=cons, start_date='2016-01-01', end_date='', 
            ma=[5, 10, 20], factors=['vr', 'tor'])
df.head(5)


# 3. 复权行情
# adj=qfq(前复权), hfq(后复权),默认None不复权
df = ts.bar('600000', conn=cons, adj='qfq', start_date='2016-01-01', end_date='')
df.head(5)


# 4. 分钟数据
# 设置freq参数,分别为1min/5min/15min/30min/60min,D(日)/W(周)/M(月)/Q(季)/Y(年)
df = ts.bar('600000', conn=cons, freq='1min', start_date='2016-01-01', end_date='')
df.head(15)