Exemple #1
0
def download_economy():

    #货币供应量
    ts.get_money_supply().to_csv(path + 'money_supply.csv')
    #季度GDP
    ts.get_gdp_quarter().to_csv(path + 'gdp_quarter.csv')
    #年度GDP
    ts.get_gdp_year().to_csv(path + 'gdp_year.csv')
    #CPI
    ts.get_cpi().to_csv(path + 'cpi.csv')

    #存款准备金率
    ts.get_rrr().to_csv(path + 'rrr.csv')
Exemple #2
0
def add_cpi_page(canvas_para, length):
    """
    函数功能:增加CPI页
    :param canvas_para:
    :return:
    """

    c = canvas_para

    cpi_df = ts.get_cpi()
    cpi_df['month'] = cpi_df.apply(lambda x: stdMonthDate(x['month']), axis=1)
    cpi_df = cpi_df.sort_values(
        by='month', ascending=False).head(length).sort_values(by='month',
                                                              ascending=True)

    cpi = extract_point_from_df_date_x(df_origin=cpi_df,
                                       date_col='month',
                                       y_col='cpi',
                                       timeAxis='month')

    gdp_pull_drawing = gen_lp_drawing([tuple(cpi)],
                                      data_note=['CPI增长率'],
                                      time_axis='month')

    renderPDF.draw(drawing=gdp_pull_drawing, canvas=c, x=10, y=letter[1] * 0.6)

    c.showPage()

    return c
def get_economics_state(s_date, e_date):
    s_year = s_date.split('-')[0]   # 起始年份
    e_year = e_date.split('-')[0]   # 结束年份
    s_month = s_date.split('-')[1]  # 起始月份
    e_month = s_date.split('-')[1]  # 结束月份
    s_day = s_date.split('-')[2]    # 开始日期
    e_day = e_date.split('-')[2]    # 结束日期
    # 获取Shibor拆解利率数据
    shibor_df = get_shibor(s_year)
    for y in range(int(s_year)+1, int(e_year)+1):
        shibor_df = pd.concat([shibor_df, get_shibor(y)])
    return shibor_df
    # 获取每月CPI数据
    cpi_df = ts.get_cpi()
    dates = pd.date_range(s_year + s_month + s_day, e_year + e_month + e_day)   # 生成整个时间区间内的日期
    cpi = pd.DataFrame(data={'cpi': 0}, index=dates)    # 初始化处理后的CPI数据框
    cpi.index.names = ['date']
    for i in cpi_df.month:      # 根据所需要的区间遍历每月CPI数据
        year = i.split('.')[0]
        month = i.split('.')[1]
        if len(month) == 1:     # 如果月份数小于10,则需要补0
            month = '0' + month
        cpi[year+'-'+month] = cpi_df[cpi_df['month'] == i].iloc[0, 1]
    # 获取每月货币供应量数据
    money_df = ts.get_money_supply()
    money_supply = pd.DataFrame(data={'money': 0}, index=dates)
    money_supply.index.names = ['date']
    for i in money_df.month:      # 根据所需要的区间遍历每月CPI数据
        year = i.split('.')[0]
        month = i.split('.')[1]
        if len(month) == 1:     # 如果月份数小于10,则需要补0
            month = '0' + month
        money_supply[year+'-'+month] = money_df[money_df['month'] == i].iloc[0, 2]  # 广义货币M2同比增长(%)
Exemple #4
0
def macro_info_to_sql():
    create_classify_table()

    a = ts.get_cpi()
    b = ts.get_ppi()
    c = ts.get_money_supply()
    c = c.iloc[:, [0, 1, 3, 5]]
    b = b.iloc[:, [0, 2]]
    result = pd.merge(a,
                      b,
                      how='left',
                      on=None,
                      left_on=None,
                      right_on=None,
                      left_index=False,
                      right_index=False,
                      sort=False,
                      suffixes=('_x', '_y'),
                      copy=True,
                      indicator=False)
    result = pd.merge(result,
                      c,
                      how='left',
                      on=None,
                      left_on=None,
                      right_on=None,
                      left_index=False,
                      right_index=False,
                      sort=False,
                      suffixes=('_x', '_y'),
                      copy=True,
                      indicator=False)
    df_to_mysql('anack_macro_data', result)
Exemple #5
0
def get_cpi():
    try:
        df = ts.get_cpi()
        engine = create_engine('mysql://*****:*****@127.0.0.1/stock?charset=utf8')
        df.to_sql('cpi', engine, if_exists='append')
        print "message"
    except Exception, e:
        e.message
Exemple #6
0
def get_gdp_cpi_info():
    df = ts.get_cpi()
    if df is not None:
        res = df.to_sql(microE_cpi, engine, if_exists='replace')
        msg = 'ok' if res is None else res
        print('获取居民消费价格指数: ' + msg + '\n')
    else:
        print('获取居民消费价格指数: ' + 'None' + '\n')
Exemple #7
0
def test():
    ts.get_sz50s()
    ts.get_hs300s()
    ts.get_zz500s()
    ts.realtime_boxoffice()
    ts.get_latest_news()
    ts.get_notices(tk)
    ts.guba_sina()
    ts.get_cpi()
    ts.get_ppi()
    ts.get_stock_basics()
    ts.get_concept_classified()
    ts.get_money_supply()
    ts.get_gold_and_foreign_reserves()
    ts.top_list()  #每日龙虎榜列表
    ts.cap_tops()  #个股上榜统计
    ts.broker_tops()  #营业部上榜统计
    ts.inst_tops()  # 获取机构席位追踪统计数据
    ts.inst_detail()
Exemple #8
0
def stat_all(tmp_datetime):
    # 存款利率
    data = ts.get_deposit_rate()
    common.insert_db(data, "ts_deposit_rate", False, "`date`,`deposit_type`")

    # 贷款利率
    data = ts.get_loan_rate()
    common.insert_db(data, "ts_loan_rate", False, "`date`,`loan_type`")

    # 存款准备金率
    data = ts.get_rrr()
    common.insert_db(data, "ts_rrr", False, "`date`")

    # 货币供应量
    data = ts.get_money_supply()
    common.insert_db(data, "ts_money_supply", False, "`month`")

    # 货币供应量(年底余额)
    data = ts.get_money_supply_bal()
    common.insert_db(data, "ts_money_supply_bal", False, "`year`")

    # 国内生产总值(年度)
    data = ts.get_gdp_year()
    common.insert_db(data, "ts_gdp_year", False, "`year`")

    # 国内生产总值(季度)
    data = ts.get_gdp_quarter()
    common.insert_db(data, "ts_get_gdp_quarter", False, "`quarter`")

    # 三大需求对GDP贡献
    data = ts.get_gdp_for()
    common.insert_db(data, "ts_gdp_for", False, "`year`")

    # 三大产业对GDP拉动
    data = ts.get_gdp_pull()
    common.insert_db(data, "ts_gdp_pull", False, "`year`")

    # 三大产业贡献率
    data = ts.get_gdp_contrib()
    common.insert_db(data, "ts_gdp_contrib", False, "`year`")

    # 居民消费价格指数
    data = ts.get_cpi()
    common.insert_db(data, "ts_cpi", False, "`month`")

    # 工业品出厂价格指数
    data = ts.get_ppi()
    common.insert_db(data, "ts_ppi", False, "`month`")

    #############################基本面数据 http://tushare.org/fundamental.html
    # 股票列表
    data = ts.get_stock_basics()
    print(data.index)
    common.insert_db(data, "ts_stock_basics", True, "`code`")
Exemple #9
0
 def get_cpi(self):
     dat=ts.get_cpi()
     dat.index = pd.to_datetime(dat['month'])
     dat = dat.drop(['month'], axis=1)
     dat['cpi']=dat['cpi']/100
     dat=dat['2018':'2008'] #选取时间片
     dat=dat.sort_index() #倒序
     dat['cpi2']=dat['cpi'].cumprod(axis=0) #计算累乘
     dat.to_csv("cpi.csv")
     dat.plot()
     plt.show()
Exemple #10
0
 def return_cpi(self):
     '''
     居民消费价格指数
     '''
     df = ts.get_cpi()
     detail = {}
     for col in df.columns:
         lt = df[col].values.tolist()
         lt.reverse()
         detail[col] = lt
     self.reply(detail=detail)
Exemple #11
0
def download_economy():

    path = './data/'
    df = ts.get_money_supply()
    df.to_csv(path+'money_supply.csv')
    ts.get_gdp_quarter().to_csv(path+'gdp_quarter.csv')
    ts.get_gdp_year().to_csv(path + 'gdp_year.csv')
    ts.get_cpi().to_csv(path+'cpi.csv')
    # ts.get_hist_data('sz').to_csv(path + 'sz.csv')
    # ts.get_hist_data('sh').to_csv(path + 'sh.csv')

    # import time
    import datetime
    # now_year = time.localtime().tm_year
    # now_mon = time.localtime().tm_mon
    # now_day = time.localtime().tm_mday
    years = 3
    start = datetime.datetime.today().date() + datetime.timedelta(-365*years)
    end = datetime.datetime.today().date()
    ts.get_k_data('399001',  start=str(start), index=True).to_csv(path + 'sz.csv')  #默认2年 ,
    ts.get_k_data('000001',  start=str(start), index=True).to_csv(path + 'sh.csv')
    #
    ts.get_rrr().to_csv(path + 'rrr.csv')
Exemple #12
0
def download_economy():
    import tushare as ts
    path = 'C:/Users/Administrator/stockPriditionProjects/data/'
    ts.get_money_supply().to_csv(path + 'money_supply.csv')
    ts.get_gdp_quarter().to_csv(path + 'gdp_quarter.csv')
    ts.get_gdp_year().to_csv(path + 'gdp_year.csv')
    ts.get_cpi().to_csv(path + 'cpi.csv')
    # ts.get_hist_data('sz').to_csv(path + 'sz.csv')
    # ts.get_hist_data('sh').to_csv(path + 'sh.csv')

    # import time
    import datetime
    # now_year = time.localtime().tm_year
    # now_mon = time.localtime().tm_mon
    # now_day = time.localtime().tm_mday
    years = 3
    start = datetime.datetime.today().date() + datetime.timedelta(-365 * years)
    end = datetime.datetime.today().date()
    ts.get_k_data('399001', start=str(start),
                  index=True).to_csv(path + 'sz.csv')  #默认2年 ,
    ts.get_k_data('000001', start=str(start),
                  index=True).to_csv(path + 'sh.csv')
    #存款准备金率
    ts.get_rrr().to_csv(path + 'rrr.csv')
Exemple #13
0
def get_macro():
    Macro={}
    Macro['Depo']=ts.get_deposit_rate()
    Macro['Loan']=ts.get_loan_rate()
    Macro['RRR']=ts.get_rrr()
    Macro['MoneySupply']=ts.get_money_supply()
    Macro['MoneyBalance']=ts.get_money_supply_bal()
    Macro['GDPYOY']=ts.get_gdp_year()
    Macro['GDPQOQ']=ts.get_gdp_quarter()
    Macro['GDPFOR']=ts.get_gdp_for()
    Macro['GDPPULL']=ts.get_gdp_pull()
    Macro['GDPCON']=ts.get_gdp_contrib()
    Macro['CPI']=ts.get_cpi()
    Macro['PPI']=ts.get_ppi()
    Macro['SHIBO']=ts.shibor_data()
    return Macro
Exemple #14
0
def get_cpi():
    """居民消费价格指数"""
    logger.info('Begin get CPI.')
    try:
        data_df = ts.get_cpi()
    except Exception as e:
        logger.exception('Error get CPI.')
        return None
    else:
        data_dicts = []
        if data_df.empty:
            logger.warn('Empty get CPI.')
        else:
            data_dicts = [{'month': row[0], 'cpi': row[1]} for row in data_df.values]
            logger.info('Success get CPI.')
        return data_dicts
Exemple #15
0
 def cpi_vs_m2(self):
     #此处的计算有误,获得的数据是同比,而本函数计算是环比增长的方法
     dat_cpi = ts.get_cpi()
     dat_m2 = ts.get_money_supply()
     dat_cpi.index=pd.to_datetime(dat_cpi['month'])
     dat_m2.index=pd.to_datetime(dat_m2['month'])
     dat_cpi = dat_cpi['2018':'2008']
     dat_m2 = dat_m2['2018':'2008']
     dat_m2['cpi']=dat_cpi['cpi']
     dat = dat_m2[['m0','m1','m2','cpi']]
     dat = dat.sort_index()
     dat['cpi']= dat['cpi']/100
     dat['cpi'] = dat['cpi'].cumprod(axis=0)
     dat = dat.astype(dtype='float64')
     dat = (dat - dat.min()) / (dat.max() - dat.min())
     dat.plot()
     plt.show()
Exemple #16
0
    def core_function(self, type):
        self.set_data()
        print(type)
        mongo = MongoClient("127.0.0.1", 27017)
        if (type == 'gdp_year'):
            print("gdp_year")
            df = fd.get_gdp_year()
        elif (type == 'gdp_quarter'):
            print("gdp_quarter")
            df = fd.get_gdp_quarter()
        elif (type == 'gdp_for'):
            print("gdp_for")
            df = fd.get_gdp_for()
        elif (type == 'gdp_pull'):
            print("gdp_pull")
            df = fd.get_gdp_pull()
        elif (type == 'get_money_supply_bal'):
            print("get_money_supply_bal")
            df = fd.get_money_supply_bal()
        elif (type == 'gdp_contrib'):
            print("gdp_contrib")
            df = fd.get_gdp_contrib()
        elif (type == 'get_cpi'):
            print("get_cpi")
            df = ts.get_cpi()
        elif (type == 'get_ppi'):
            print("get_ppi")
            df = ts.get_ppi()
        elif (type == 'get_rrr'):
            print("get_rrr")
            df = ts.get_rrr()
        elif (type == 'money_supply'):
            print("money_supply")
            df = ts.get_money_supply()
        elif (type == 'money_supply_bal'):
            print("money_supply_bal")
            df = ts.get_money_supply_bal()
        else:
            df = {}

        print(df)
        insert_string = df.to_json(orient='records')
        items = json.loads(insert_string)
        mongo.macro.gdp_year.insert(items)
def get_all_price(code_list):
    '''''process all stock'''
    df = ts.get_realtime_quotes(STOCK)
    print df

    df = ts.get_latest_news()
    print df

    df = ts.get_cpi()
    print df

    df = ts.get_stock_basics()
    print df

    df = ts.get_sz50s()
    print df

    df = ts.get_hist_data('600848')
    print df
Exemple #18
0
def get_cpi(start_month, end_month):
    """
    取得居民消费价格指数
    @param start_month: 开始月份YYYY.M
    @param end_month: 结束月份YYYY.M
    @return: 指定月份范围的CPI数据集
    """

    # 日期格式
    date_format = '%Y.%m'
    # 文件路径
    file_path = './cache/ts/ts_cpi.csv'
    # 如果存在数据文件,则直接读取
    if os.path.exists(file_path):
        logcm.print_info('读取缓存数据...')
        # 读取文件
        df_cpi = pd.read_csv(file_path,
                             dtype={
                                 'month': str,
                                 'cpi': float,
                                 'month_num': int
                             })
    else:
        # 取得CPI数据
        df_cpi = ts.get_cpi()
        # 把日期转成Num
        month_num_list = datecm.date_list_to_num(df_cpi["month"], date_format)
        # 插入新的列
        df_cpi.insert(2, 'month_num', month_num_list)
        # 保存到文件
        df_cpi.to_csv(file_path, index=False)

    # 对开始结束日期计算
    start = datecm.date_to_num(start_month, date_format)
    end = datecm.date_to_num(end_month, date_format)
    # 根据开始结束时间数据筛选
    df_result = df_cpi.ix[df_cpi.month_num >= start, :]
    df_result = df_result.ix[df_cpi.month_num <= end, :]

    # 按照日期数值排正序
    df_result = df_result.sort_values(by=['month_num'])
    # 返回数据集
    return df_result
Exemple #19
0
    def __init__(self, instrument, timewindow):
        self.__instrument = instrument
        self.__timewindow = int(timewindow)
        self.__starttime = (
            datetime.datetime.now() -
            datetime.timedelta(days=self.__timewindow)).strftime('%Y-%m-%d')
        # __starttime is max time of entry point
        self.__endtime = datetime.datetime.now().strftime('%Y-%m-%d')
        basics = ts.get_stock_basics()
        profit = ts.get_profit_data(2014, 3)  #code is not the index
        report = ts.get_report_data(2014, 3)
        operation = ts.get_operation_data(2014, 3)
        growth = ts.get_growth_data(2014, 3)
        debtpay = ts.get_debtpaying_data(2014, 3)
        cashflow = ts.get_cashflow_data(2014, 3)
        # country wise

        rrr = ts.get_rrr()
        money_supply = ts.get_money_supply()
        cpi = ts.get_cpi()
 def __call__(self, conns):
     self.base = Base()
     self.financial_data = conns['financial_data']
     '''存款利率'''
     deposit_rate = ts.get_deposit_rate()
     self.base.batchwri(deposit_rate, 'deposit_rate', self.financial_data)
     '''贷款利率'''
     loan_rate = ts.get_loan_rate()
     self.base.batchwri(loan_rate, 'loan_rate', self.financial_data)
     '''存款准备金率'''
     rrr = ts.get_rrr()
     self.base.batchwri(rrr, 'RatioOfDeposit', self.financial_data)
     '''货币供应量'''
     money_supply = ts.get_money_supply()
     self.base.batchwri(money_supply, 'money_supply', self.financial_data)
     '''货币供应量(年底余额)'''
     money_supply_bal = ts.get_money_supply_bal()
     self.base.batchwri(money_supply_bal, 'money_supply_bal',
                        self.financial_data)
     '''国内生产总值(年度)'''
     gdp_year = ts.get_gdp_year()
     self.base.batchwri(gdp_year, 'gdp_year', self.financial_data)
     '''国内生产总值(季度)'''
     gdp_quarter = ts.get_gdp_quarter()
     self.base.batchwri(gdp_quarter, 'gdp_quarter', self.financial_data)
     '''三大需求对GDP贡献'''
     gdp_for = ts.get_gdp_for()
     self.base.batchwri(gdp_for, 'gdp_for', self.financial_data)
     '''三大产业对GDP拉动'''
     gdp_pull = ts.get_gdp_pull()
     self.base.batchwri(gdp_pull, 'gdp_pull', self.financial_data)
     '''三大产业贡献率'''
     gdp_contrib = ts.get_gdp_contrib()
     self.base.batchwri(gdp_contrib, 'gdp_contrib', self.financial_data)
     '''居民消费价格指数'''
     cpi = ts.get_cpi()
     self.base.batchwri(cpi, 'cpi', self.financial_data)
     '''工业品出场价格指数'''
     ppi = ts.get_ppi()
     self.base.batchwri(ppi, 'ppi', self.financial_data)
Exemple #21
0
 def gdp_vs_m2(self):
     dat_cpi = ts.get_cpi()
     dat_m2 = ts.get_money_supply()
     dat_gdp = ts.get_gdp_year()
     dat_gdp.index =pd.to_datetime(dat_gdp['year'], format='%Y')
     dat_gdp=dat_gdp.to_period('A')
     dat_gdp = dat_gdp['gdp']
     dat_gdp = dat_gdp['2017':'2000']
     dat_gdp=dat_gdp.sort_index()
     #dat_gdp = (dat_gdp - dat_gdp.min()) / (dat_gdp.max() - dat_gdp.min())
     dat_cpi.index=pd.to_datetime(dat_cpi['month'])
     dat_m2.index=pd.to_datetime(dat_m2['month'])
     dat_cpi = dat_cpi['2017':'2000']
     dat_m2 = dat_m2['2017':'2000']
     dat_m2['cpi']=dat_cpi['cpi']
     dat = dat_m2[['m0','m1','m2','cpi']]
     dat = dat.sort_index()
     dat['cpi']= dat['cpi']/100
     dat['cpi'] = dat['cpi'].cumprod(axis=0)
     dat = dat.astype(dtype='float64')
     #dat = (dat - dat.min()) / (dat.max() - dat.min())
     dat=dat.resample("AS").first()
     dat= dat.to_period('A')
     #dat=dat.resample("AS").sum()
     dat['gdp']=dat_gdp
     #dat['m2-gdp']=dat['m2']-dat['gdp']
     #dat = (dat - dat.min()) / (dat.max() - dat.min())
     #dat['m2-gdp']=dat['m2']-dat['gdp']
     dat['m0']=dat['m0']/dat['m0']['2000']
     dat['m1']=dat['m1']/dat['m1']['2000']
     dat['m2']=dat['m2']/dat['m2']['2000']
     dat['cpi']=dat['cpi']/dat['cpi']['2000']
     dat['gdp']=dat['gdp']/dat['gdp']['2000']
     dat['m2-gdp']=dat['m2']-dat['gdp']
     dat=dat.drop(['cpi','m0','m1'], axis=1)
     print(dat)
     #dat['m2-gdp'].plot()
     dat.plot()
     plt.show()
Exemple #22
0
    pi :第一产业献率(%)
    si :第二产业献率(%)
    industry:其中工业献率(%)
    ti :第三产业献率(%)

'''

ts.get_gdp_contrib()

# 居民消费价格指数
'''
返回值说明:
    month :统计月份
    cpi :价格指数
'''
ts.get_cpi()

# 工业品出厂价格指数
'''
返回值说明:

    month :统计月份
    ppiip :工业品出厂价格指数
    ppi :生产资料价格指数
    qm:采掘工业价格指数
    rmi:原材料工业价格指数
    pi:加工工业价格指数
    cg:生活资料价格指数
    food:食品类价格指数
    clothing:衣着类价格指数
    roeu:一般日用品价格指数
Exemple #23
0
import tushare as ts

print(ts.get_cpi())
Exemple #24
0
def capture_stock_data():
    capture_date = datetime.datetime.now().strftime("%Y%m%d")
    save_dir = "/home/dandelion/stock_data/" + capture_date

    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
        print("The save directory is created successfully!\n", save_dir)
    print("The save directory is already exist!\n", save_dir)
    # ======================Daily Command================================================================
    # get the boxoffcie data of the last day and save as csvfile named as the capture command
    ts.day_boxoffice().to_csv(
        save_dir + "/" + capture_date + "_day_boxoffice.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("day_boxoffice data capture completed!")

    # get the cinema data of the last day and save as csvfile named as the capture command
    ts.day_cinema().to_csv(
        save_dir + "/" + capture_date + "_day_cinema.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("day_cinema data capture completed!")

    ts.month_boxoffice().to_csv(
        save_dir + "/" + capture_date + "_month_boxoffice.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("month_boxoffice data capture completed!")

    ts.realtime_boxoffice().to_csv(
        save_dir + "/" + capture_date + "_realtime_boxoffice.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("realtime_boxoffice data capture completed!")

    # get the stock data index of the last day and save as csvfile named as the capture command
    ts.get_index().to_csv(
        save_dir + "/" + capture_date + "_get_index.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_index data capture completed!")

    # get the history cpi data and save as csvfile named as the capture command
    ts.get_cpi().to_csv(
        save_dir + "/" + capture_date + "_get_cpi.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_cpi data capture completed!")

    # get the history gdp data  by month and save as csvfile named as the capture command
    ts.get_gdp_year().to_csv(
        save_dir + "/" + capture_date + "_get_gdp_year.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_gdp_year data capture completed!")

    # get today all stock data and save as csvfile named as the capture command
    # ts.get_today_all().to_csv(save_dir+'/'+capture_date+'_get_today_all.csv',header=True,sep=',',index=False)

    # get detail information of the top brokers today and save as csvfile named as the capture command
    ts.broker_tops().to_csv(
        save_dir + "/" + capture_date + "_broker_tops.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("broker_tops data capture completed!")

    # get detail information of the top brokers today and save as csvfile named as the capture command
    ts.cap_tops().to_csv(
        save_dir + "/" + capture_date + "_cap_tops.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("cap_tops data capture completed!")

    ts.get_area_classified().to_csv(
        save_dir + "/" + capture_date + "_get_area_classified.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_area_classified data capture completed!")

    # ts.get_balance_sheet(code='').to_csv(save_dir+'/'+capture_date+'_get_balance_sheet.csv',header=True,sep=',',index=False)
    # print('get_balance_sheet data capture completed!')

    # ts.get_cash_flow(code='').to_csv(save_dir+'/'+capture_date+'_get_cash_flow.csv',header=True,sep=',',index=False)
    # print('get_cash_flow data capture completed!')

    ts.get_day_all().to_csv(
        save_dir + "/" + capture_date + "_get_day_all.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_day_all data capture completed!")
    ts.get_cashflow_data(2018, 3).to_csv(
        save_dir + "/" + capture_date + "_get_cashflow_data.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_cashflow_data data capture completed!")
    ts.get_concept_classified().to_csv(
        save_dir + "/" + capture_date + "_get_concept_classified.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_concept_classified data capture completed!")
    ts.get_debtpaying_data(2018, 3).to_csv(
        save_dir + "/" + capture_date + "_get_debtpaying_data.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_debtpaying_data data capture completed!")
    ts.get_deposit_rate().to_csv(
        save_dir + "/" + capture_date + "_get_deposit_rate.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_deposit_rate data capture completed!")

    ts.get_gdp_contrib().to_csv(
        save_dir + "/" + capture_date + "_get_gdp_contrib.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_gdp_for().to_csv(
        save_dir + "/" + capture_date + "_get_gdp_for.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_gdp_pull().to_csv(
        save_dir + "/" + capture_date + "_get_gdp_pull.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_gdp_quarter().to_csv(
        save_dir + "/" + capture_date + "_get_gdp_quarter.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("get_gdp_ data capture completed!")
    # ts.get_gdp_year().to_csv(save_dir+'/'+capture_date+'_get_gdp_year.csv',header=True,sep=',',index=False)
    ts.get_gem_classified().to_csv(
        save_dir + "/" + capture_date + "_get_gem_classified.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_gold_and_foreign_reserves().to_csv(
        save_dir + "/" + capture_date + "_get_gold_and_foreign_reserves.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_growth_data(2018, 3).to_csv(
        save_dir + "/" + capture_date + "_get_growth_data.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_industry_classified().to_csv(
        save_dir + "/" + capture_date + "_get_industry_classified.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_hs300s().to_csv(
        save_dir + "/" + capture_date + "_get_hs300s.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_sz50s().to_csv(
        save_dir + "/" + capture_date + "_get_sz50s.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_zz500s().to_csv(
        save_dir + "/" + capture_date + "_get_zz500s.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_operation_data(2018, 3).to_csv(
        save_dir + "/" + capture_date + "_get_operation_data.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_stock_basics().to_csv(
        save_dir + "/" + capture_date + "_get_stock_basics.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.get_report_data(2018, 3).to_csv(
        save_dir + "/" + capture_date + "_get_report_data.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.inst_detail().to_csv(
        save_dir + "/" + capture_date + "_inst_detail.csv",
        header=True,
        sep=",",
        index=False,
    )
    ts.inst_tops().to_csv(
        save_dir + "/" + capture_date + "_inst_tops.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("inst_tops data capture completed!")
    ts.new_stocks().to_csv(
        save_dir + "/" + capture_date + "_new_stocks.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("new_stocks data capture completed!")
    ts.top_list().to_csv(
        save_dir + "/" + capture_date + "_top_list.csv",
        header=True,
        sep=",",
        index=False,
    )
    print("top_list data capture completed!")
Exemple #25
0
plt.show()
## 相关指标
short_indices(cum_delta ,0.03)

## 计算收益
gain = 1+signal1.shift(1)*df[0]
## 画图
sz.close.plot()
(sz.close[0]*gain.cumprod()).plot()
plt.show()

short_indices(gain.cumprod(),0.03)



cpi = tushare.get_cpi()

cpi.index = cpi["month"].apply(pandas.to_datetime)
dff = pandas.DataFrame()
dff["cpi"] =  cpi["cpi"].shift(1)
dff["index_gain"] = delta

dff = dff.dropna().sort_index()
dff.corr()

signal= dff["cpi"]>(dff["cpi"].shift(1))
gain = 1+dff["index_gain"]*(signal.shift(1))
sz.close.plot()
(sz.close[0]*gain.cumprod()).plot()
plt.show()
Exemple #26
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Feb  2 20:29:25 2019

@author: xsxsz
"""

import pandas as pd
import tushare as ts

df = ts.realtime_boxoffice()
print(df)
print('--------------')
df = ts.get_cpi()
print(df)
print('--------------')
df = ts.get_stock_basics()
print(df)
print('--------------')
df.to_csv('./stock.csv')
Exemple #27
0
def call_cpi():
    df = ts.get_cpi()
    return df.loc[0, 'cpi']
Exemple #28
0
    money_supply=ts.get_money_supply()
    money_supply.to_csv('D:\\ts\\macro\\money_supply.csv', encoding='gbk')

    money_supply_bal=ts.get_money_supply_bal()
    money_supply_bal.to_csv('D:\\ts\\macro\\money_supply_bal.csv', encoding='gbk')

    gdp_year=ts.get_gdp_year()
    gdp_year.to_csv('D:\\ts\\macro\\gdp_year.csv', encoding='gbk')

    gdp_quater=ts.get_gdp_quarter()
    gdp_quater.to_csv('D:\\ts\\macro\\gdp_quater.csv', encoding='gbk')

    gdp_for=ts.get_gdp_for()
    gdp_for.to_csv('D:\\ts\\macro\\gdp_for.csv', encoding='gbk')

    gdp_pull=ts.get_gdp_pull()
    gdp_pull.to_csv('D:\\ts\\macro\\gdp_pull.csv', encoding='gbk')

    gdp_contrib=ts.get_gdp_contrib()
    gdp_contrib.to_csv('D:\\ts\\macro\\gdp_contrib.csv', encoding='gbk')

    cpi=ts.get_cpi()
    cpi.to_csv('D:\\ts\\macro\\cpi.csv', encoding='gbk')


    ppi=ts.get_ppi()
    ppi.to_csv('D:\\ts\\macro\\ppi.csv', encoding='gbk')

    print 'all done'

Exemple #29
0
def cpi():
    return ts.get_cpi()
Exemple #30
0
#GDP
gdp_y = ts.get_gdp_year()
gdp_q = ts.get_gdp_quarter()

#三大需求对GDP贡献
gdp_for = ts.get_gdp_for()

#三大产业对GDP拉动
gdp_pull = ts.get_gdp_pull()

#三大产业贡献率
gdp_contrib = ts.get_gdp_contrib()


cpi = ts.get_cpi()

ppi = ts.get_ppi()

df = ts.shibor_data() #取当前年份的数据
#df = ts.shibor_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)

df = ts.shibor_quote_data() #取当前年份的数据
#df = ts.shibor_quote_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)

#shibo均值
df = ts.shibor_ma_data() #取当前年份的数据
#df = ts.shibor_ma_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)
Exemple #31
0
""" 
# @File  : macro_eco_data.py
# @Author: Chen Zhen
# python version: 3.7
# @Date  : 2020/3/28
# @Desc  : use tushare to crawl maro economics data

"""


import tushare as ts

print(ts.get_cpi()) # 得到cpi数据
print(ts.get_hist_data('600519')) # 得到茅台的股票交易数据
Exemple #32
0
 def getCPI(self):
     file_name = 'cpi.csv'
     path = self.index + self.index_cpi + file_name
     data = ts.get_cpi()
     data.to_csv(path, encoding='utf-8')
     print(file_name)
Exemple #33
0
 def Get_cpi(self):
     dt = ts.get_cpi()
     dt.to_csv('居民消费价格指数cpi.csv')
     print(dt)
def load_macro_economy():
    # 下载存款利率
    try:
        rs = ts.get_deposit_rate()
        pd.DataFrame.to_sql(rs, "deposit_rate", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载存款利率ok")
    except:
        print("下载存款利率出错")
    # 下载贷款利率
    try:
        rs = ts.get_loan_rate()
        pd.DataFrame.to_sql(rs, "loan_rate", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载贷款利率ok")
    except:
        print("下载贷款利率出错")
    # 下载存款准备金率
    try:
        rs = ts.get_rrr()
        pd.DataFrame.to_sql(rs, "rrr", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载存款准备金率ok")
    except:
        print("下载存款准备金率出错")
    # 下载货币供应量
    try:
        rs = ts.get_money_supply()
        pd.DataFrame.to_sql(rs, "money_supply", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载货币供应量ok")
    except:
        print("下载货币供应量出错")
    # 下载货币供应量(年底余额)
    try:
        rs = ts.get_money_supply_bal()
        pd.DataFrame.to_sql(
            rs, "money_supply_bal", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True
        )
        print("下载货币供应量(年底余额)ok")
    except:
        print("下载货币供应量(年底余额)出错")
    # 下载国内生产总值(年度)
    try:
        rs = ts.get_gdp_year()
        pd.DataFrame.to_sql(rs, "gdp_year", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载国内生产总值(年度)ok")
    except:
        print("下载国内生产总值(年度)出错")
    # 下载国内生产总值(季度)
    try:
        rs = ts.get_gdp_quarter()
        pd.DataFrame.to_sql(rs, "gdp_quarter", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载国内生产总值(季度)ok")
    except:
        print("下载国内生产总值(季度)出错")
    # 下载三大需求对GDP贡献
    try:
        rs = ts.get_gdp_for()
        pd.DataFrame.to_sql(rs, "gdp_for", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载三大需求对GDP贡献ok")
    except:
        print("下载三大需求对GDP贡献出错")
    # 下载三大产业对GDP拉动
    try:
        rs = ts.get_gdp_pull()
        pd.DataFrame.to_sql(rs, "gdp_pull", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载三大产业对GDP拉动ok")
    except:
        print("下载三大产业对GDP拉动出错")
    # 下载三大产业贡献率
    try:
        rs = ts.get_gdp_contrib()
        pd.DataFrame.to_sql(rs, "gdp_contrib", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载三大产业贡献率ok")
    except:
        print("下载三大产业贡献率出错")
    # 下载居民消费价格指数
    try:
        rs = ts.get_cpi()
        pd.DataFrame.to_sql(rs, "gdp_cpi", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载居民消费价格指数ok")
    except:
        print("下载居民消费价格指数出错")
    # 下载工业品出厂价格指数
    try:
        rs = ts.get_ppi()
        pd.DataFrame.to_sql(rs, "gdp_ppi", con=conn_macro_economy, flavor="mysql", if_exists="replace", index=True)
        print("下载工业品出厂价格指数ok")
    except:
        print("下载工业品出厂价格指数出错")