def 下载板块数据(self):
     # 获取不同分类数据
     ts.get_industry_classified().to_csv('./股票数据/基本信息/行业分类.csv')
     ts.get_concept_classified().to_csv('./股票数据/基本信息/概念分类.csv')
     ts.get_area_classified().to_csv('./股票数据/基本信息/地域分类.csv')
     ts.get_sme_classified().to_csv('./股票数据/基本信息/中小板.csv')
     ts.get_gem_classified().to_csv('./股票数据/基本信息/创业板.csv')
     ts.get_st_classified().to_csv('./股票数据/基本信息/风险警示板.csv')
     ts.get_hs300s().to_csv('./股票数据/基本信息/沪深300.csv')
     ts.get_sz50s().to_csv('./股票数据/基本信息/上证50.csv')
     ts.get_zz500s().to_csv('./股票数据/基本信息/中证500.csv')
Exemple #2
0
def main():
    logger = logging.getLogger("mylog")
    formatter = logging.Formatter(
        '%(name)-12s %(asctime)s %(levelname)-8s %(message)s',
        '%a, %d %b %Y %H:%M:%S',
    )
    file_handler = logging.FileHandler("./log/test_log.txt", encoding='utf-8')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

    zxb_tickers = ts.get_sme_classified()
    one_dateee = date(2015, month=7, day=30)
    for i in range(zxb_tickers.index.size):
        one_ticker = zxb_tickers.iloc[i, 0]
        for j in range(3650):
            one_data = input_data_label(one_ticker, one_dateee, 30, 0.1)
            x = one_data.get_label()

            #检查数据合理性
            if (not one_data.data_valid):
                logger.debug('invalid: ' + str(one_ticker) + '_' +
                             date_to_str(one_dateee) + "_" + str(x))
            #发现买入点
            if (x == 1):
                logger.debug('valid: 买入' + str(one_ticker) + '_' +
                             date_to_str(one_dateee) + "_" + str(x))

            one_dateee = one_dateee - timedelta(1)
def load_data():
    try:
        rs=ts.get_sme_classified()
        pd.DataFrame.to_sql(rs, table_name, con=conn , flavor='mysql', if_exists='replace',index=True)
    except Exception as e:
        print(e.message)
        print("公司地域分类信息数据出错")
Exemple #4
0
def load_tushare_df(df_type):
    file = 'ts.' + df_type + '.dat'
    try:
        obj = pickle.load(open(file, "rb"))
    except:
        #print("---load in the fly",df_type)
        if df_type == "basic":
            obj = ts.get_stock_basics()
        elif df_type == "sme":
            obj = ts.get_sme_classified()
        elif df_type == "gem":
            obj = ts.get_gem_classified()
        elif df_type == "industry":
            #print(ts, pickle)
            obj = ts.get_industry_classified(
            )  #该函数不全,只有2800多个,实际股票有3326,所以换个方法取 get_stock_basics
        elif df_type == "st":
            obj = ts.get_st_classified()
        else:
            raise Exception("Error TSshare Type!!!")
        pickle.dump(obj, open(file, "wb", 0))
    else:
        #print("***Read from file %s" % df_type)
        pass
    return obj
Exemple #5
0
 def core_function(self, func):
     self.set_data()
     mongo = MongoClient("127.0.0.1", 27017)
     if (func == "industry_classified"):
         df = ts.get_industry_classified()
     elif (func == "concept_classified"):
         df = ts.get_concept_classified()
     elif (func == "area_classified"):
         df = ts.get_area_classified()
     elif (func == "gem_classified"):
         df = ts.get_gem_classified()
     elif (func == "sme_classified"):
         df = ts.get_sme_classified()
     elif (func == "st_classified"):
         df = ts.get_st_classified()
     elif (func == "hs300s"):
         df = ts.get_hs300s()
     elif (func == "sz50s"):
         df = ts.get_sz50s()
     elif (func == "zz500s"):
         df = ts.get_zz500s()
         print(df)
     elif (func == "terminated"):
         df = ts.get_terminated()
     else:
         df = {}
     insert_string = df.to_json(orient='records')
     items = json.loads(insert_string)
     coll = mongo.classify[func]
     coll.insert(items)
Exemple #6
0
def get_sme_info():
    # 中小板分类
    df = ts.get_sme_classified()
    res = df.to_sql(all_sme_table, engine, if_exists='replace')
    msg = 'ok' if res is None else res
    print('获取中小板分类: ' + msg + '\n')
    print(msg)
Exemple #7
0
    def fetch_classification(self):
        # 数据来源自新浪财经的行业分类/概念分类/地域分类
        print("Trying: get_today_all")
        today_all = ts.get_today_all()  #一次性获取今日全部股价
        set_today_all = set(today_all.T.values[0])

        print("Trying: get_industry_classified")
        industry_classified = ts.get_industry_classified()
        set_industry_classified = set(industry_classified.T.values[0])

        print("Trying: get_area_classified")
        area_classified = ts.get_area_classified()
        set_area_classified = set(area_classified.T.values[0])

        print("Trying: get_concept_classified")
        concept_classified = ts.get_concept_classified()
        set_concept_classified = set(concept_classified.T.values[0])

        print("Trying: get_sme_classified")
        sme_classified = ts.get_sme_classified()
        set_sme_classified = set(sme_classified.T.values[0])

        return [
            today_all, set_today_all, industry_classified,
            set_industry_classified, area_classified, set_area_classified,
            concept_classified, set_concept_classified, sme_classified,
            set_sme_classified
        ]
def test_ts_stock():
    logger = logging.getLogger("mylog")
    formatter = logging.Formatter(
        '%(name)-12s %(asctime)s %(levelname)-8s %(message)s',
        '%a, %d %b %Y %H:%M:%S',
    )
    file_handler = logging.FileHandler("./log/test_log.txt", encoding='utf-8')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

    zxb_tickers = ts.get_sme_classified()
    one_dateee = date(2015, month=7, day=30)
    for i in range(zxb_tickers.index.size):
        one_ticker = zxb_tickers.iloc[i, 0]
        for j in range(3650):
            one_data = price_and_volume_ts(one_ticker, one_dateee)
            x = one_data.get_normalized_price_and_volume()

            # 检查数据合理性
            if (one_data.data_valid):
                logger.debug('valid: ' + str(one_ticker) + '_' +
                             date_to_str(one_dateee) + "_" + str(x))  # 数据有效
            elif (one_data.no_week_ma):
                logger.debug('invalid: no week MA20 ' + str(one_ticker) + '_' +
                             date_to_str(one_dateee) + "_" + str(x))
                break  # 数据无效,而且再往前的日子的数据都不会有效了
            else:  # 数据无效
                logger.debug('invalid: ' + str(one_ticker) + '_' +
                             date_to_str(one_dateee) + "_" + str(x))
            one_dateee = one_dateee - timedelta(1)
def classification(class_types):
    if class_types == 'industry':
        industry_classified = ts.get_industry_classified()
        industry_classified.to_csv('D:\\ts\\classification\\industry_classified.csv', encoding='gbk')
    elif class_types == 'concept':
        concept_classified = ts.get_concept_classified()
        concept_classified.to_csv('D:\\ts\\classification\\concept_classified.csv', encoding='gbk')
    elif class_types == 'area':
        area_classified = ts.get_area_classified()
        area_classified.to_csv('D:\\ts\\classification\\area_classified.csv', encoding='gbk')
    elif class_types == 'sme':
        sme_classified = ts.get_sme_classified()
        sme_classified.to_csv('D:\\ts\\classification\\sme_classified.csv', encoding='gbk')
    elif class_types == 'gem':
        gem_classified = ts.get_gem_classified()
        gem_classified.to_csv('D:\\ts\\classification\\gem_classified.csv', encoding='gbk')
    elif class_types == 'st':
        st_classified = ts.get_st_classified()
        st_classified.to_csv('D:\\ts\\classification\\st_classified.csv', encoding='gbk')
    elif class_types == 'hs300':
        hs300s = ts.get_hs300s()
        hs300s.to_csv('D:\\ts\\classification\\hs300s.csv', encoding='gbk')
    elif class_types == 'sz50':
        sz50s = ts.get_sz50s()
        sz50s.to_csv('D:\\ts\\classification\\sz50s.csv', encoding='gbk')
    elif class_types == 'zz500':
        zz500s = ts.get_zz500s()
        zz500s.to_csv('D:\\ts\\classification\\zz500s.csv', encoding='gbk')
    elif class_types == 'terminated':
        terminated = ts.get_terminated()
        terminated.to_csv('D:\\ts\\classification\\terminated.csv', encoding='gbk')
    elif class_types == 'suspended':
        suspended = ts.get_suspended()
        suspended.to_csv('D:\\ts\\classification\\suspended.csv', encoding='gbk')
Exemple #10
0
	def fetch_classification(self):
		# 数据来源自新浪财经的行业分类/概念分类/地域分类
		print( "Trying: get_today_all" )
		today_all = ts.get_today_all() #一次性获取今日全部股价
		set_today_all = set(today_all.T.values[0])

		print( "Trying: get_industry_classified" )
		industry_classified = ts.get_industry_classified()
		set_industry_classified = set(industry_classified.T.values[0])

		print( "Trying: get_area_classified" )
		area_classified = ts.get_area_classified()
		set_area_classified = set(area_classified.T.values[0])

		print( "Trying: get_concept_classified" )
		concept_classified = ts.get_concept_classified()
		set_concept_classified = set(concept_classified.T.values[0])

		print( "Trying: get_sme_classified" )
		sme_classified = ts.get_sme_classified()
		set_sme_classified = set(sme_classified.T.values[0])

		return [
					today_all
				,	set_today_all
				,	industry_classified
				,	set_industry_classified
				,	area_classified
				,	set_area_classified
				,	concept_classified
				,	set_concept_classified
				,	sme_classified
				,	set_sme_classified
				]
Exemple #11
0
def get_sme_classified():
    try:
        logger.info('get sme data starting...')
        df = ts.get_sme_classified()
        logger.info('get sme data end...')
    except:
        logger.exception('some errors between get sme data end...')
    return df
Exemple #12
0
 def get_002_300(self):
     g002 = ts.get_sme_classified()
     g300 = ts.get_gem_classified()
     engine = create_engine(
         'mysql://*****:*****@127.0.0.1/tushareapp?charset=utf8')
     g002.to_sql('g002', engine, if_exists='append')
     time.sleep(60)
     g300.to_sql('g300', engine, if_exists='append')
Exemple #13
0
 def get_sme_classified(self):
     """中小板分类"""
     sme = ts.get_sme_classified()
     
     sme['smeName'] = 1
     sme = sme[['code','smeName']]
     sme.columns = ['code','smeName']
     self.data = pd.merge(self.data,sme,on=['code'],how='outer')
def get_stockcodes(stocktype):  #stocktype 股票类型:sh 上证 sz 深证 cyb 创业板
    if(stocktype=='cyb'): #创业板
        codes=ts.get_gem_classified().code.tolist()
    elif (stocktype=='sz'): #深证
        codes=ts.get_sme_classified().code.tolist()
    elif(stocktype=='sh'): #上证
        codes=ts.get_sz50s().code.tolist() #目前只调用了上证50
    return codes #返回的股票代码列表
def getSmeClassified():
    '''
    获取中小板分类。获取中小板股票数据,即查找所有002开头的股票
    参数说明:
    file_path:文件路径,默认为None即由TuShare提供,可以设定自己的股票文件路径。
    返回值说明:
    code:股票代码
    name:股票名称
    '''
    return ts.get_sme_classified()
Exemple #16
0
def main():
    #按照日期和code取数据
    hs300s = ts.get_sme_classified()
    date_list = _datelist((2014, 1, 1), (2017, 1, 1))
    for one_code in hs300s['code']:
        for one_date in date_list:
            prices, volumes = _get_price_and_volume_ts(one_code, one_date)
            if (prices is not None):
                prices = prices > np.mean(prices)
                volumes = volumes > np.mean(volumes)
Exemple #17
0
def stk_get_sme_classified():
    try:
        conn = connMysql().createconn()
        cur = conn.cursor()
        cur.execute('truncate table stk_sme_classified;')
        cur.close()
        conn.close()
        df = ts.get_sme_classified()
        df.to_sql('stk_sme_classified', engine, if_exists='append')
    except:
        print("获取中小板数据失败")
Exemple #18
0
def load_data():
    try:
        rs = ts.get_sme_classified()
        pd.DataFrame.to_sql(rs,
                            name=table_name,
                            con=con,
                            schema=db,
                            if_exists='replace',
                            index=True)
    except Exception as e:
        print(e)
        print("公司地域分类信息数据出错")
Exemple #19
0
def getstockclassifieddata():
    mylogger = getmylogger()
    print("start")
    scdict = {
        'industry': '行业分类',
        'concept': '概念分类',
        'area': '地域分类',
        'sme': '中小板分类',
        'gem': '创业板分类',
        'st': '风险警示板分类',
        'hs300s': '沪深300成份及权重',
        'sz50s': '上证50成份股',
        'zz500s': '中证500成份股',
        'terminated': '终止上市股票列表',
        'suspended': '暂停上市股票列表'
    }

    for sc in scdict:
        sctbname = sc
        scinfo = scdict[sctbname]
        try:
            if sc == "industry":
                df = ts.get_industry_classified()
            elif sc == "concept":
                df = ts.get_concept_classified()
            elif sc == "area":
                df = ts.get_area_classified()
            elif sc == "sme":
                df = ts.get_sme_classified()
            elif sc == "gem":
                df = ts.get_gem_classified()
            elif sc == "st":
                df = ts.get_st_classified()
            elif sc == "hs300s":
                df = ts.get_hs300s()
            elif sc == "zz500s":
                df = ts.get_zz500s()
            elif sc == "sz50s":
                df = ts.get_sz50s()
            elif sc == "terminated":
                df = ts.get_terminated()
            elif sc == "suspended":
                df = ts.get_suspended()
            else:
                mylogger.info("没有执行命令。")
            if df is not None:
                tosql(df, sctbname, "replace", scinfo, mylogger)
            else:
                mylogger.info("没有%s数据。" % scinfo)
        except Exception:
            tracelog = traceback.format_exc()
            mylogger.info("获取数据异常。")
            mylogger.info(tracelog)
Exemple #20
0
def updatesmall():
    smalldatalist=ts.get_sme_classified()
    smalldata=pd.DataFrame(smalldatalist)
    conn= ms.connect(host='localhost',port = 3306,user='******', passwd='123456',db ='investment',charset="utf8")
    cur = conn.cursor()
    values=[]
    for index,row in smalldata.iterrows():
        values.append((row['code'],row['name']))
    cur.executemany('insert into small (code,name) values(%s,%s)',values)
    conn.commit()
    cur.close()
    conn.close()
Exemple #21
0
def getZXCodeList():
    df_zx = None
    try:
        df_zx = pd.read_sql_table('zx', con=engine)
    except:
        pass
    if df_zx is None or df_zx.empty:
        df_zx = ts.get_sme_classified()
        df_zx.to_sql('zx',
                     con=engine,
                     if_exists='replace',
                     index=False,
                     index_label='code')
    return df_zx['code'].tolist()
Exemple #22
0
def update_sme(request):
    '''更新中小板数据'''
    stock_sme.objects.all().delete()

    rltobj = ts.get_sme_classified()
    objlist = []
    for i in range(len(rltobj)):
        tmpobj = stock_sme(code=rltobj.loc[i]['code'],
                           name=rltobj.loc[i]['name'])
        objlist.append(tmpobj)

    stock_sme.objects.bulk_create(objlist)

    return HttpResponse('succ.{0}条!'.format(len(objlist)))
Exemple #23
0
 def list(self, stock_block_type):
     stock_block = None
     if stock_block_type == self.industry:
         stock_block = db.get(STOCK_BLOCK_INDUSTRY)
         if stock_block is None:
             stock_block = ts.get_industry_classified()
             db.save(STOCK_BLOCK_INDUSTRY, stock_block)
     elif stock_block_type == self.concept:
         stock_block = db.get(STOCK_BLOCK_CONCEPT)
         if stock_block is None:
             stock_block = ts.get_concept_classified()
             db.save(STOCK_BLOCK_CONCEPT, stock_block)
     elif stock_block_type == self.area:
         stock_block = db.get(STOCK_BLOCK_AREA)
         if stock_block is None:
             stock_block = ts.get_area_classified()
             db.save(STOCK_BLOCK_AREA, stock_block)
     elif stock_block_type == self.sme:
         stock_block = db.get(STOCK_BLOCK_SME)
         if stock_block is None:
             stock_block = ts.get_sme_classified()
             db.save(STOCK_BLOCK_SME, stock_block)
     elif stock_block_type == self.gem:
         stock_block = db.get(STOCK_BLOCK_GEM)
         if stock_block is None:
             stock_block = ts.get_gem_classified()
             db.save(STOCK_BLOCK_GEM, stock_block)
     elif stock_block_type == self.st:
         stock_block = db.get(STOCK_BLOCK_ST)
         if stock_block is None:
             stock_block = ts.get_st_classified()
             db.save(STOCK_BLOCK_ST, stock_block)
     elif stock_block_type == self.hs300s:
         stock_block = db.get(STOCK_BLOCK_HS300S)
         if stock_block is None:
             stock_block = ts.get_hs300s()
             db.save(STOCK_BLOCK_HS300S, stock_block)
     elif stock_block_type == self.sz50s:
         stock_block = db.get(STOCK_BLOCK_SZ50S)
         if stock_block is None:
             stock_block = ts.get_sz50s()
             db.save(STOCK_BLOCK_SZ50S, stock_block)
     elif stock_block_type == self.zz500s:
         stock_block = db.get(STOCK_BLOCK_ZZ500S)
         if stock_block is None:
             stock_block = ts.get_zz500s()
             db.save(STOCK_BLOCK_ZZ500S, stock_block)
     else:
         return None
     return stock_block
def save_sme_classified():
    """获取中小板股票数据,即查找所有002开头的股票"""
    logger.info('Begin get and save sme中小板 clssified.')
    try:
        data_df = ts.get_sme_classified()
        if data_df is not None and not data_df.empty:
            data = data_df.values
            data_dicts = [{'code': row[0], 'name': row[1]} for row in data]
            SmeClassified.insert_many(data_dicts).execute()
            logger.info('Success get and save sme中小板 classified.')
        else:
            logger.warn('Empty get and save sme中小板 classified.')
    except Exception as e:
        logger.exception('Error get and save sme中小板 classified.')
Exemple #25
0
def sme_classified(request):
    try:
        data = ts.get_sme_classified()

        res = {
            'columns': [
                '股票代码',
                '股票名称',
            ],
            'data': json.loads(json.dumps(data.values, cls=DateEncoder))
        }
    except (Exception):
        return HttpResponse('error', Exception)
    else:
        return HttpResponse(json.dumps(res), content_type="application/json")
def get_stock_codes(markets=['zz500s'], ipo_date=None):
    '''
    markets: list
    e.g.['sme','gem','st','hs300s','sz50s','zz500s','general'];
    ipo_date: str
    e.g.'2015-03-30'
    '''
    code_list = []
    if 'sme' in markets:  #中小板
        df = ts.get_sme_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'gem' in markets:  #创业板
        df = ts.get_gem_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'st' in markets:  #风险板
        df = ts.get_st_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'hs300s' in markets:  #沪深300
        df = ts.get_hs300s()
        codes = list(df.code)
        code_list.extend(codes)
    if 'sz50s' in markets:  #上证50
        df = ts.get_sz50s()
        codes = list(df.code)
        code_list.extend(codes)
    if 'zz500s' in markets:  #中证500
        df = ts.get_zz500s()
        codes = list(df.code)
        code_list.extend(codes)

    if ipo_date:
        new_stock_df = ts.new_stocks()
        new_stock_df = new_stock_df[new_stock_df['ipo_date'] > ipo_date]
        new_stock_codes = list(new_stock_df.code)
        #得到输入时间之后发行的股票

        code_list = list(set(code_list))
        desired_codes = list(set(code_list) - set(new_stock_codes))
    #剔除新股

    desired_codes = list(set(code_list))

    return desired_codes
Exemple #27
0
def updatesmall():
    smalldatalist = ts.get_sme_classified()
    smalldata = pd.DataFrame(smalldatalist)
    conn = ms.connect(host='localhost',
                      port=3306,
                      user='******',
                      passwd='123456',
                      db='investment',
                      charset="utf8")
    cur = conn.cursor()
    values = []
    for index, row in smalldata.iterrows():
        values.append((row['code'], row['name']))
    cur.executemany('insert into small (code,name) values(%s,%s)', values)
    conn.commit()
    cur.close()
    conn.close()
Exemple #28
0
 def preload():
     stock_block = ts.get_industry_classified()
     db.save(STOCK_BLOCK_INDUSTRY, stock_block)
     stock_block = ts.get_concept_classified()
     db.save(STOCK_BLOCK_CONCEPT, stock_block)
     stock_block = ts.get_area_classified()
     db.save(STOCK_BLOCK_AREA, stock_block)
     stock_block = ts.get_sme_classified()
     db.save(STOCK_BLOCK_SME, stock_block)
     stock_block = ts.get_gem_classified()
     db.save(STOCK_BLOCK_GEM, stock_block)
     stock_block = ts.get_st_classified()
     db.save(STOCK_BLOCK_ST, stock_block)
     stock_block = ts.get_hs300s()
     db.save(STOCK_BLOCK_HS300S, stock_block)
     stock_block = ts.get_sz50s()
     db.save(STOCK_BLOCK_SZ50S, stock_block)
     stock_block = ts.get_zz500s()
     db.save(STOCK_BLOCK_ZZ500S, stock_block)
Exemple #29
0
def initial_pool():
   concept_df = ts.get_concept_classified()
   for idx in concept_df.index:
       if(concept_df['c_name'][idx] == "汽车电子"):
           a_concept_list.append(concept_df['code'][idx])
   
   print("汽车电子 concept is ")
   #concept_df.to_csv('concept.csv')
   
   industry_df = ts.get_industry_classified()
   for idx in industry_df.index:
       if(concept_df['c_name'][idx] == "电子器件"):
           a_concept_list.append(concept_df['code'][idx])
       if(concept_df['c_name'][idx] == "电子信息"):
           a_concept_list.append(concept_df['code'][idx])
   print(a_concept_list)
   # print(industry_df)
   #industry_df.to_csv('industry.csv')
   # small and chuangye
   try:
       startup_df = ts.get_gem_classified()
       sm_df = ts.get_sme_classified()
       basic_df = ts.get_stock_basics()
   except:
       traceback.print_exc()
       pass
   print(startup_df)
   
   print("start to parse startup stocks\n") ;
   
   for idx in startup_df.index:
   	pe = basic_df['pe'][startup_df['code'][idx]]
   	if(pe < 80 and pe != 0):
                   startup_pool.append(startup_df['code'][idx])
   #                print(str(startup_df['code'][idx])+" pe is "+str(pe))
   
   print(startup_pool)
   print("start to parse small and middle stocks\n") ;
   for idx in sm_df.index:
   	pe = basic_df['pe'][sm_df['code'][idx]]
   	if(pe < 50 and pe != 0):
                   sm_pool.append(sm_df['code'][idx])
Exemple #30
0
def getStockClassfied():
    filepath = 'f:\\stockdata\\股票分类数据\\'
    index = 0
    # 行业分类
    df = ts.get_industry_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1

    # 概念分类
    df = ts.get_concept_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1

    # 地域分类
    df = ts.get_area_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 中小板分类
    df = ts.get_sme_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 创业板分类
    df = ts.get_gem_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 风险警示板分类
    df = ts.get_st_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 沪深300成份及权重
    df = ts.get_hs300s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 上证50成份股
    df = ts.get_sz50s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 中证500成份股
    df = ts.get_zz500s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
Exemple #31
0
def get_stockcode_list(dataset=None, update=False):

    filepath = dataset + '.csv'
    codefilepath = os.path.join(rootDir, 'codelist', filepath)

    if (os.path.exists(codefilepath) and update == False):
        codelist = pd.read_csv(codefilepath, encoding='gbk')
        return codelist

    if (dataset == 'zxb'):
        codelist = ts.get_sme_classified()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'cyb'):
        codelist = ts.get_gem_classified()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'hs300'):
        codelist = ts.get_hs300s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'sz50'):
        codelist = ts.get_sz50s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'zz500'):
        codelist = ts.get_zz500s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'whole'):
        codelist = ts.get_today_all()
        codelist = codelist[['code', 'name']]

        codelist.to_csv(codefilepath)

        return codelist
Exemple #32
0
def get_sme():
    '''
    函数功能:
    --------
    获取所有中小板上市的公司。

    输入参数:
    --------
    无

    输出参数:
    --------
    DataFrame
        code,代码
        name,名称
    '''
    # Download data
    sme = ts.get_sme_classified()

    # Return Dataframe
    return sme
Exemple #33
0
def generate_according_sme(filename):
    category = ts.get_sme_classified()
    reload(sys)
    sys.setdefaultencoding('utf-8')
    category.to_csv("tmp")
    with open("tmp") as f:
        lines = f.readlines()
        code = []
        name = []
        for index in range(len(lines)):
            if index > 0:
                code.append(lines[index].split(",")[1])
                name.append(lines[index].split(",")[2])

    code = [str(i) for i in code]
    name = [str(i) for i in name]
    stock_pair = zip(code, name)
    data = {"stock":stock_pair}

    with open(filename,'w') as f:
        yaml.dump(data, f)
Exemple #34
0
def test():
    logger = logging.getLogger("mylog")
    formatter = logging.Formatter('%(name)-12s %(asctime)s %(levelname)-8s %(message)s', '%a, %d %b %Y %H:%M:%S',)
    file_handler = logging.FileHandler("test_log.txt",encoding='utf-8')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

    zxb_tickers = ts.get_sme_classified()
    one_dateee = date(2017,month=4,day=1)
    for i in range(zxb_tickers.index.size):
        one_ticker = zxb_tickers.iloc[i,0]
        for j in range(3650):
            one_data = input_data_label(one_ticker,one_dateee)
            x = one_data.get_input_data()
            y = one_data.get_label_data()

            #检查数据合理性
            if(one_data.data_valid):
                logger.debug('valid: '+str(one_ticker)+'_'+date_to_str(one_dateee)+"_"+str(x)+'_'+str(y)) #数据有效
            elif(one_data.no_week_ma):
                logger.debug('invalid: '+str(one_ticker)+'_'+date_to_str(one_dateee)+"_"+str(x)+'_'+str(y))
                break  #数据无效,而且再往前的日子的数据都不会有效了
            one_dateee = one_dateee-timedelta(1)
Exemple #35
0
Created on 2015年6月4日

@author: Administrator
'''
import tushare as ts
# 行业分类
ts.get_industry_classified()

# 概念分类
ts.get_concept_classified()

# 地域分类
ts.get_area_classified()

# 获取沪深300当前成份股及所占权重
ts.get_hs300s()

# 获取中小板股票数据,即查找所有002开头的股票
ts.get_sme_classified()

# 获取创业板股票数据,即查找所有300开头的股票
ts.get_gem_classified()

# 获取风险警示板股票数据,即查找所有st股票
ts.get_st_classified()

# 获取上证50成份股
ts.get_sz50s()

# 获取中证500成份股
ts.get_zz500s()
Exemple #36
0
def zxb():
    return ts.get_sme_classified()
def get_sme_info(file_path):
    sme_info = ts.get_sme_classified()
    sme_info.to_csv(file_path, encoding='utf-8')
    print '\ndownload sme info finished\n'
Exemple #38
0
#Concept = ts.get_concept_classified()
#Concept = Concept.set_index('code')
#Concept = Concept.rename(columns = {'c_name': 'concept'})
#Concept = Concept.drop('name', axis = 1)


# Merge
#StockInfo1 = StockInfo.join(Concept, how = 'outer')

# get all stocks
StockName = StockInfo['name']
StockName.to_csv('./ASHR/DATA/StockName.csv', index = True, header = True)

# Small & Medium Enterprise
# Note SME is a pd.series data type
SME = ts.get_sme_classified()
SME.to_csv('./ASHR/DATA/SME.csv', index = False)

# Growth Enterprise Market
GEM = ts.get_gem_classified()
GEM.to_csv('./ASHR/DATA/GEM.csv', index = False)

# ST Enterprise
ST = ts.get_st_classified()
ST.to_csv('./ASHR/DATA/ST.csv', index = False)

ts.get_h_data()

# HS 300
HS300S = ts.get_hs300s()
HS300S.to_csv('./ASHR/DATA/HS300S.csv', index = False)
Exemple #39
0
import ilhb


# fs = ts.top_list()
# fs['dif'] = fs.apply(lambda x: float(x.buy) - float(x.sell), axis=1)
# fs.mask(lambda x: float(x.dif) > 0)
# print(fs)
# cf = fs[fs['dif'] > 0]
# grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0)
# [x for x in fs if x['dif'] > 0]
# print (cf)
# fs.to_sql('lhb_daily', engine, if_exists='append')
# df = pd.read_sql_query("select code,reason,date from lhb_daily", engine)
# for x, y, z in df.values:
# print x, y, z
zxb = ts.get_sme_classified()
engine = create_engine("mysql://*****:*****@55e4043822731.gz.cdb.myqcloud.com:5073/stock?charset=utf8")
sql = "INSERT INTO five_minute_data(code,date,t_3_00,t_2_55,t_2_50,t_2_45,t_2_40,t_2_35) VALUES('%s','%s','%s','%s','%s','%s','%s','%s')"
for code in zxb["code"]:
    connection = engine.connect()
    df = ts.get_hist_data(code, start="2016-01-29", end="2016-01-30", ktype="5")
    # df['code'] = '600637'
    df = df.drop(
        [
            "ma5",
            "ma10",
            "ma20",
            "v_ma5",
            "v_ma10",
            "v_ma20",
            "open",
Exemple #40
0
def load_company_industry_info(): 
    #下载加载行业分类数据
    try:
        rs=ts.get_industry_classified()
        sql.write_frame(rs, "company_industry_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载公司行业分类信息ok")
    except:
        print("下载公司行业分类信息出错")
    #下载加载概念分类数据
    try:
        rs=ts.get_concept_classified()
        sql.write_frame(rs, "company_concept_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("载公司概念分类信息ok")
    except:
        print("下载公司概念分类信息出错")
    #下载加载地域分类数据
    try:
        rs=ts.get_area_classified()
        sql.write_frame(rs, "company_area_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载公司区域分类信息ok")
    except:
        print("下载公司区域分类信息出错")
    #下载加载中小板分类数据
    try:
        rs=ts.get_sme_classified()
        sql.write_frame(rs, "company_sme_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载中小板分类数据ok")
    except:
        print("下载中小板分类数据出错")
    #下载加载创业板分类数据
    try:
        rs=ts.get_gem_classified()
        sql.write_frame(rs, "company_gem_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载创业板分类数据ok")
    except:
        print("下载创业板分类数据出错")
    #下载加载st板分类数据
    try:
        rs=ts.get_st_classified()
        sql.write_frame(rs, "company_st_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载st板分类数据ok")
    except:
        print("下载st板分类数据出错")
    #下载加载沪深300板分类数据
    try:
        rs=ts.get_hs300s()
        sql.write_frame(rs, "company_hs300_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载沪深300板分类数据ok")
    except:
        print("下载加载沪深300板分类数据出错")
    #下载加载上证50板分类数据
    try:
        rs=ts.get_sz50s()
        sql.write_frame(rs, "company_sz50_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载上证50板分类数据ok")
    except:
        print("下载加载上证50板分类数据出错")
    #下载加载中证500板分类数据
    try:
        rs=ts.get_zz500s()
        sql.write_frame(rs, "company_zz500_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载中证500板分类数据ok")
    except:
        print("下载加载中证500板分类数据出错")
    #下载加载终止上市分类数据
    try:
        rs=ts.get_terminated()
        sql.write_frame(rs, "company_terminated_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载终止上市分类数据ok")
    except:
        print("下载加载终止上市分类数据出错")
    #下载加载暂停上市分类数据
    try:
        rs=ts.get_suspended()
        sql.write_frame(rs, "company_suspended_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载暂停上市分类数据ok")
    except:
        print("下载加载暂停上市分类数据出错")
def get_sme():
    """获取中小板股票数据,即查找所有002开头的股票"""
    df = ts.get_sme_classified()
    print(df)
Exemple #42
0
# 行业分类
inds = ts.get_industry_classified()
inds.columns = ('code', 'name', 'industry')
time.sleep(1)
# 概念分类
concepts = ts.get_concept_classified()
concepts.columns = ('code', 'name', 'concept')
time.sleep(1)
# 地域分类
areas = ts.get_area_classified()
areas.columns = ('code', 'name', 'area')

time.sleep(1)
# 中小板块
smalls = ts.get_sme_classified() 

time.sleep(1)
# 创业版
news = ts.get_gem_classified()

time.sleep(1)
# st版块
sts = ts.get_st_classified()

time.sleep(1)
# 沪深300
hss = ts.get_hs300s()

time.sleep(1)
# 上证50