def configure(self, time_series, nfft=None): """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_shape = time_series.read_data_shape() log_debug_array(LOG, time_series, "time_series") ##-------------------- Fill Algorithm for Analysis -------------------## self.algorithm = NodeCoherence() if nfft is not None: self.algorithm.nfft = nfft
def configure(self, time_series, nfft=None): """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_time_series_index = time_series self.input_shape = (self.input_time_series_index.data_length_1d, self.input_time_series_index.data_length_2d, self.input_time_series_index.data_length_3d, self.input_time_series_index.data_length_4d) LOG.debug("Time series shape is %s" % str(self.input_shape)) # -------------------- Fill Algorithm for Analysis -------------------## self.algorithm = NodeCoherence() if nfft is not None: self.algorithm.nfft = nfft
def configure(self, view_model): # type: (NodeCoherenceModel) -> None """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_time_series_index = self.load_entity_by_gid(view_model.time_series.hex) self.input_shape = (self.input_time_series_index.data_length_1d, self.input_time_series_index.data_length_2d, self.input_time_series_index.data_length_3d, self.input_time_series_index.data_length_4d) self.log.debug("Time series shape is %s" % str(self.input_shape)) # -------------------- Fill Algorithm for Analysis -------------------## self.algorithm = NodeCoherence() if view_model.nfft is not None: self.algorithm.nfft = view_model.nfft
def get_input_tree(self): """ Return a list of lists describing the interface to the analyzer. This is used by the GUI to generate the menus and fields necessary for defining a simulation. """ algorithm = NodeCoherence() algorithm.trait.bound = self.INTERFACE_ATTRIBUTES_ONLY tree = algorithm.interface[self.INTERFACE_ATTRIBUTES] for node in tree: if node['name'] == 'time_series': node['conditions'] = FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'], operations=["=="], values=[4]) return tree
class NodeCoherenceAdapter(ABCAsynchronous): """ TVB adapter for calling the NodeCoherence algorithm. """ _ui_name = "Cross coherence of nodes" _ui_description = "Compute Node Coherence for a TimeSeries input DataType." _ui_subsection = "coherence" def get_input_tree(self): """ Return a list of lists describing the interface to the analyzer. This is used by the GUI to generate the menus and fields necessary for defining a simulation. """ algorithm = NodeCoherence() algorithm.trait.bound = self.INTERFACE_ATTRIBUTES_ONLY tree = algorithm.interface[self.INTERFACE_ATTRIBUTES] for node in tree: if node['name'] == 'time_series': node['conditions'] = FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'], operations=["=="], values=[4]) return tree def get_output(self): return [CoherenceSpectrum] def configure(self, time_series, nfft=None): """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_shape = time_series.read_data_shape() log_debug_array(LOG, time_series, "time_series") ##-------------------- Fill Algorithm for Analysis -------------------## self.algorithm = NodeCoherence() if nfft is not None: self.algorithm.nfft = nfft def get_required_memory_size(self, **kwargs): """ Return the required memory to run this algorithm. """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) input_size = numpy.prod(used_shape) * 8.0 output_size = self.algorithm.result_size(used_shape) return input_size + output_size def get_required_disk_size(self, **kwargs): """ Returns the required disk size to be able to run the adapter (in kB). """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) return self.array_size2kb(self.algorithm.result_size(used_shape)) def launch(self, time_series, nfft=None): """ Launch algorithm and build results. """ ##--------- Prepare a CoherenceSpectrum object for result ------------## coherence = CoherenceSpectrum(source=time_series, nfft=self.algorithm.nfft, storage_path=self.storage_path) ##------------- NOTE: Assumes 4D, Simulator timeSeries. --------------## node_slice = [slice(self.input_shape[0]), None, slice(self.input_shape[2]), slice(self.input_shape[3])] ##---------- Iterate over slices and compose final result ------------## small_ts = TimeSeries(use_storage=False) small_ts.sample_rate = time_series.sample_rate partial_coh = None for var in range(self.input_shape[1]): node_slice[1] = slice(var, var + 1) small_ts.data = time_series.read_data_slice(tuple(node_slice)) self.algorithm.time_series = small_ts partial_coh = self.algorithm.evaluate() coherence.write_data_slice(partial_coh) coherence.frequency = partial_coh.frequency coherence.close_file() return coherence
class NodeCoherenceAdapter(ABCAdapter): """ TVB adapter for calling the NodeCoherence algorithm. """ _ui_name = "Cross coherence of nodes" _ui_description = "Compute Node Coherence for a TimeSeries input DataType." _ui_subsection = "coherence" def get_form_class(self): return NodeCoherenceForm def get_output(self): return [CoherenceSpectrumIndex] def configure(self, view_model): # type: (NodeCoherenceModel) -> None """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_time_series_index = self.load_entity_by_gid( view_model.time_series) self.input_shape = (self.input_time_series_index.data_length_1d, self.input_time_series_index.data_length_2d, self.input_time_series_index.data_length_3d, self.input_time_series_index.data_length_4d) self.log.debug("Time series shape is %s" % str(self.input_shape)) # -------------------- Fill Algorithm for Analysis -------------------## self.algorithm = NodeCoherence() if view_model.nfft is not None: self.algorithm.nfft = view_model.nfft def get_required_memory_size(self, view_model): # type: (NodeCoherenceModel) -> int """ Return the required memory to run this algorithm. """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) input_size = numpy.prod(used_shape) * 8.0 output_size = self.algorithm.result_size(used_shape) return input_size + output_size def get_required_disk_size(self, view_model): # type: (NodeCoherenceModel) -> int """ Returns the required disk size to be able to run the adapter (in kB). """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) return self.array_size2kb(self.algorithm.result_size(used_shape)) def launch(self, view_model): # type: (NodeCoherenceModel) -> [CoherenceSpectrumIndex] """ Launch algorithm and build results. """ # --------- Prepare a CoherenceSpectrum object for result ------------## coherence_spectrum_index = CoherenceSpectrumIndex() time_series_h5 = h5.h5_file_for_index(self.input_time_series_index) dest_path = h5.path_for(self.storage_path, CoherenceSpectrumH5, coherence_spectrum_index.gid) coherence_h5 = CoherenceSpectrumH5(dest_path) coherence_h5.gid.store(uuid.UUID(coherence_spectrum_index.gid)) coherence_h5.source.store(view_model.time_series) coherence_h5.nfft.store(self.algorithm.nfft) # ------------- NOTE: Assumes 4D, Simulator timeSeries. --------------## input_shape = time_series_h5.data.shape node_slice = [ slice(input_shape[0]), None, slice(input_shape[2]), slice(input_shape[3]) ] # ---------- Iterate over slices and compose final result ------------## small_ts = TimeSeries() small_ts.sample_period = time_series_h5.sample_period.load() small_ts.sample_period_unit = time_series_h5.sample_period_unit.load() partial_coh = None for var in range(input_shape[1]): node_slice[1] = slice(var, var + 1) small_ts.data = time_series_h5.read_data_slice(tuple(node_slice)) self.algorithm.time_series = small_ts partial_coh = self.algorithm.evaluate() coherence_h5.write_data_slice(partial_coh) coherence_h5.frequency.store(partial_coh.frequency) array_metadata = coherence_h5.array_data.get_cached_metadata() freq_metadata = coherence_h5.frequency.get_cached_metadata() coherence_h5.close() time_series_h5.close() coherence_spectrum_index.array_data_min = array_metadata.min coherence_spectrum_index.array_data_max = array_metadata.max coherence_spectrum_index.array_data_mean = array_metadata.mean coherence_spectrum_index.array_has_complex = array_metadata.has_complex coherence_spectrum_index.array_is_finite = array_metadata.is_finite coherence_spectrum_index.shape = json.dumps( coherence_h5.array_data.shape) coherence_spectrum_index.ndim = len(coherence_h5.array_data.shape) coherence_spectrum_index.fk_source_gid = self.input_time_series_index.gid coherence_spectrum_index.nfft = partial_coh.nfft coherence_spectrum_index.frequencies_min = freq_metadata.min coherence_spectrum_index.frequencies_max = freq_metadata.max coherence_spectrum_index.subtype = CoherenceSpectrum.__name__ return coherence_spectrum_index
def get_traited_datatype(self): return NodeCoherence()