Exemple #1
0
    def configure(self, time_series):
        """
        Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
        """
        self.input_shape = time_series.read_data_shape()
        log_debug_array(LOG, time_series, "time_series")

        ##-------------------- Fill Algorithm for Analysis -------------------##
        self.algorithm = NodeCovariance()
 def configure(self, time_series):
     """
     Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
     """
     self.input_shape = time_series.read_data_shape()
     log_debug_array(LOG, time_series, "time_series")
     
     ##-------------------- Fill Algorithm for Analysis -------------------##
     self.algorithm = NodeCovariance()
Exemple #3
0
 def get_input_tree(self):
     """
     Return a list of lists describing the interface to the analyzer. This
     is used by the GUI to generate the menus and fields necessary for
     defining a simulation.
     """
     algorithm = NodeCovariance()
     algorithm.trait.bound = self.INTERFACE_ATTRIBUTES_ONLY
     tree = algorithm.interface[self.INTERFACE_ATTRIBUTES]
     tree[0]['conditions'] = FilterChain(fields = [FilterChain.datatype + '._nr_dimensions'], operations = ["=="], values = [4])
     return tree
class NodeCovarianceAdapter(ABCAsynchronous):
    """ TVB adapter for calling the NodeCovariance algorithm. """
    
    _ui_name = "Temporal covariance of nodes"
    _ui_description = "Compute Temporal Node Covariance for a TimeSeries input DataType."
    _ui_subsection = "covariance"


    def get_input_tree(self):
        """
        Return a list of lists describing the interface to the analyzer. This
        is used by the GUI to generate the menus and fields necessary for defining a simulation.
        """
        algorithm = NodeCovariance()
        algorithm.trait.bound = self.INTERFACE_ATTRIBUTES_ONLY
        tree = algorithm.interface[self.INTERFACE_ATTRIBUTES]
        tree[0]['conditions'] = FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'],
                                            operations=["=="], values=[4])
        return tree
    
    
    def get_output(self):
        return [Covariance]


    def configure(self, time_series):
        """
        Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
        """
        self.input_shape = time_series.read_data_shape()
        log_debug_array(LOG, time_series, "time_series")
        
        ##-------------------- Fill Algorithm for Analysis -------------------##
        self.algorithm = NodeCovariance()


    def get_required_memory_size(self, **kwargs):
        """
        Return the required memory to run this algorithm.
        """
        used_shape = (self.input_shape[0], 1, self.input_shape[2], 1)
        input_size = numpy.prod(used_shape) * 8.0
        output_size = self.algorithm.result_size(used_shape)
        return input_size + output_size    


    def get_required_disk_size(self, **kwargs):
        """
        Returns the required disk size to be able to run the adapter ( in kB).
        """
        used_shape = (self.input_shape[0], 1, self.input_shape[2], 1)
        return self.algorithm.result_size(used_shape) * TVBSettings.MAGIC_NUMBER / 8 / 2 ** 10


    def launch(self, time_series):
        """ 
        Launch algorithm and build results.

        :returns: the `Covariance` built with the given timeseries as source
        """
        
        #Create a FourierSpectrum dataType object.
        covariance = Covariance(source=time_series, storage_path=self.storage_path)
        
        #NOTE: Assumes 4D, Simulator timeSeries.
        node_slice = [slice(self.input_shape[0]), None, slice(self.input_shape[2]), None]
        
        for mode in range(self.input_shape[3]):
            for var in range(self.input_shape[1]):
                small_ts = TimeSeries(use_storage=False)
                node_slice[1] = slice(var, var + 1)
                node_slice[3] = slice(mode, mode + 1)
                small_ts.data = time_series.read_data_slice(tuple(node_slice))
                self.algorithm.time_series = small_ts 
                partial_cov = self.algorithm.evaluate()
                covariance.write_data_slice(partial_cov.array_data)
        covariance.close_file()
        return covariance
Exemple #5
0
class NodeCovarianceAdapter(ABCAsynchronous):
    """ TVB adapter for calling the NodeCovariance algorithm. """

    _ui_name = "Temporal covariance of nodes"
    _ui_description = "Compute Temporal Node Covariance for a TimeSeries input DataType."
    _ui_subsection = "covariance"

    def get_input_tree(self):
        """
        Return a list of lists describing the interface to the analyzer. This
        is used by the GUI to generate the menus and fields necessary for defining a simulation.
        """
        algorithm = NodeCovariance()
        algorithm.trait.bound = self.INTERFACE_ATTRIBUTES_ONLY
        tree = algorithm.interface[self.INTERFACE_ATTRIBUTES]
        tree[0]['conditions'] = FilterChain(
            fields=[FilterChain.datatype + '._nr_dimensions'],
            operations=["=="],
            values=[4])
        return tree

    def get_output(self):
        return [Covariance]

    def configure(self, time_series):
        """
        Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
        """
        self.input_shape = time_series.read_data_shape()
        log_debug_array(LOG, time_series, "time_series")

        ##-------------------- Fill Algorithm for Analysis -------------------##
        self.algorithm = NodeCovariance()

    def get_required_memory_size(self, **kwargs):
        """
        Return the required memory to run this algorithm.
        """
        used_shape = (self.input_shape[0], 1, self.input_shape[2], 1)
        input_size = numpy.prod(used_shape) * 8.0
        output_size = self.algorithm.result_size(used_shape)
        return input_size + output_size

    def get_required_disk_size(self, **kwargs):
        """
        Returns the required disk size to be able to run the adapter ( in kB).
        """
        used_shape = (self.input_shape[0], 1, self.input_shape[2], 1)
        return self.array_size2kb(self.algorithm.result_size(used_shape))

    def launch(self, time_series):
        """ 
        Launch algorithm and build results.

        :returns: the `Covariance` built with the given timeseries as source
        """

        #Create a FourierSpectrum dataType object.
        covariance = Covariance(source=time_series,
                                storage_path=self.storage_path)

        #NOTE: Assumes 4D, Simulator timeSeries.
        node_slice = [
            slice(self.input_shape[0]), None,
            slice(self.input_shape[2]), None
        ]

        for mode in range(self.input_shape[3]):
            for var in range(self.input_shape[1]):
                small_ts = TimeSeries(use_storage=False)
                node_slice[1] = slice(var, var + 1)
                node_slice[3] = slice(mode, mode + 1)
                small_ts.data = time_series.read_data_slice(tuple(node_slice))
                self.algorithm.time_series = small_ts
                partial_cov = self.algorithm.evaluate()
                covariance.write_data_slice(partial_cov.array_data)
        covariance.close_file()
        return covariance