def from_file(cls, source_file="eeg_brainstorm_65.txt"): result = cls() source_full_path = try_get_absolute_path("tvb_data.sensors", source_file) reader = FileReader(source_full_path) result.labels = reader.read_array(dtype=numpy.str, use_cols=(0,)) result.locations = reader.read_array(use_cols=(1, 2, 3)) return result
def from_file(cls, source_file="eeg_brainstorm_65.txt", instance=None): source_full_path = try_get_absolute_path("tvb_data.sensors", source_file) reader = FileReader(source_full_path) labels = reader.read_array(dtype="string", use_cols=(0, )) locations = reader.read_array(use_cols=(1, 2, 3)) return labels, locations
def from_file(cls, source_file="eeg_unitvector_62.txt.bz2", instance=None): if instance is None: result = cls() else: result = instance source_full_path = try_get_absolute_path("tvb_data.sensors", source_file) reader = FileReader(source_full_path) result.labels = reader.read_array(dtype="string", use_cols=(0, )) result.locations = reader.read_array(use_cols=(1, 2, 3)) return result
def from_file_projection_array(source_file="projection_eeg_62_surface_16k.mat", matlab_data_name="ProjectionMatrix"): source_full_path = try_get_absolute_path("tvb_data.projectionMatrix", source_file) reader = FileReader(source_full_path) return reader.read_array(matlab_data_name=matlab_data_name)
def from_file_region_mapping_array(source_file=os.path.join( "cortex_reg13", "all_regions_cortex_reg13.txt")): source_full_path = try_get_absolute_path("tvb_data.surfaceData", source_file) reader = FileReader(source_full_path) return reader.read_array(dtype=numpy.int32)
def from_file(cls, source_file="meg_151.txt.bz2"): result = super(SensorsMEG, cls).from_file(source_file) source_full_path = try_get_absolute_path("tvb_data.sensors", source_file) reader = FileReader(source_full_path) result.orientations = reader.read_array(use_cols=(4, 5, 6)) return result
def from_file(source_file="local_connectivity_16384.mat", instance=None): source_full_path = try_get_absolute_path("tvb_data.local_connectivity", source_file) reader = FileReader(source_full_path) matrix = reader.read_array(matlab_data_name="LocalCoupling") return matrix
def from_file(source_file="regionMapping_16k_76.txt", instance=None): source_full_path = try_get_absolute_path("tvb_data.regionMapping", source_file) reader = FileReader(source_full_path) mapping = reader.read_array(dtype=numpy.int32) return mapping
def from_file(source_file="regionMapping_16k_76.txt"): source_full_path = try_get_absolute_path("tvb_data.regionMapping", source_file) reader = FileReader(source_full_path) result = RegionMapping() result.array_data = reader.read_array(dtype=numpy.int32) return result
def from_file(cls, source_file="meg_151.txt.bz2", instance=None): #labels, locations = super(SensorsMEG, cls).from_file(source_file=source_file) source_full_path = try_get_absolute_path("tvb_data.sensors", source_file) reader = FileReader(source_full_path) orientations = reader.read_array(use_cols=(4, 5, 6)) return orientations
def from_file(source_file="local_connectivity_16384.mat"): result = LocalConnectivity() source_full_path = try_get_absolute_path("tvb_data.local_connectivity", source_file) reader = FileReader(source_full_path) result.matrix = reader.read_array(matlab_data_name="LocalCoupling") return result
def from_file(cls, source_file=None, matlab_data_name=None, is_brainstorm=False, instance=None): source_full_path = try_get_absolute_path("tvb_data.projectionMatrix", source_file) reader = FileReader(source_full_path) if is_brainstorm: projection_data = reader.read_gain_from_brainstorm() else: projection_data = reader.read_array(matlab_data_name=matlab_data_name) return projection_data
def from_file(source_file=os.path.join("cortex_reg13", "region_mapping", "o52r00_irp2008_hemisphere_both_subcortical_false_regions_74.txt.bz2"), instance=None): if instance is None: result = RegionMapping() else: result = instance source_full_path = try_get_absolute_path("tvb_data.surfaceData", source_file) reader = FileReader(source_full_path) result.array_data = reader.read_array(dtype=numpy.int32) return result
def from_file(source_file=os.path.join("cortex_reg13", "local_connectivity_surface_cortex_reg13.mat"), instance=None): if instance is None: result = LocalConnectivity() else: result = instance source_full_path = try_get_absolute_path("tvb_data.surfaceData", source_file) reader = FileReader(source_full_path) result.matrix = reader.read_array(matlab_data_name="LocalCoupling") return result
def from_file(source_file="regionMapping_16k_76.txt", instance=None): if instance is None: result = RegionMapping() else: result = instance source_full_path = try_get_absolute_path("tvb_data.regionMapping", source_file) reader = FileReader(source_full_path) result.array_data = reader.read_array(dtype=numpy.int32) return result
def from_file(source_file=os.path.join("cortex_reg13", "all_regions_cortex_reg13.txt"), instance=None): if instance is None: result = RegionMapping() else: result = instance source_full_path = try_get_absolute_path("tvb_data.surfaceData", source_file) reader = FileReader(source_full_path) result.array_data = reader.read_array(dtype=numpy.int32) return result
mu=[2.2], variables_of_interest=["xi", "alpha"]) oscilator.configure() # for alpha series uncomment the below code # oscilator = models.ReducedSetHindmarshRose(r=[0.006], a=[1.0], b=[3.0], c=[1.0], d=[5.0], s=[4.0], xo=[-1.6], K11=[4.0], K12=[1.6], K21=[0.15], sigma=[0.4], mu=[2.2], variables_of_interest=["xi","alpha"]) # oscilator.configure() # set up the structural connectivity mypath = "" # insert the path to where all subjects connectivities are stored subject = "" # specify which subject to load # load connectivity weights reader = FileReader(file_path=mypath + '/' + subject + '/weights.txt') w = reader.read_array(dtype=numpy.float64, skip_rows=0, use_cols=None, matlab_data_name=None) # load region centers reader = FileReader(file_path=mypath + '/' + subject + '/centres.txt') rl = reader.read_array(dtype="string", skip_rows=0, use_cols=(0, ), matlab_data_name=None) c = reader.read_array(dtype=numpy.float64, skip_rows=0, use_cols=(1, 2, 3), matlab_data_name=None) # load connectivity tract lengths reader = FileReader(file_path=mypath + '/' + subject + '/tract_lengths.txt')