def test_read_hypothesis(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestHypothesis.h5")
        hypothesis_builder = HypothesisBuilder(3, self.config)
        dummy_hypothesis = hypothesis_builder.set_e_hypothesis(
            [0], [0.6]).build_hypothesis()

        self.writer.write_hypothesis(dummy_hypothesis, test_file)
        hypothesis = self.reader.read_hypothesis(test_file)

        assert dummy_hypothesis.number_of_regions == hypothesis.number_of_regions
        assert numpy.array_equal(dummy_hypothesis.x0_values,
                                 hypothesis.x0_values)
        assert dummy_hypothesis.x0_indices == hypothesis.x0_indices
        assert numpy.array_equal(dummy_hypothesis.e_values,
                                 hypothesis.e_values)
        assert dummy_hypothesis.e_indices == hypothesis.e_indices
        assert numpy.array_equal(dummy_hypothesis.w_values,
                                 hypothesis.w_values)
        assert dummy_hypothesis.w_indices == hypothesis.w_indices
        assert numpy.array_equal(dummy_hypothesis.lsa_propagation_indices,
                                 hypothesis.lsa_propagation_indices)
        if len(dummy_hypothesis.lsa_propagation_indices) == 0:
            assert numpy.array_equal([0, 0, 0],
                                     hypothesis.lsa_propagation_strengths)
        else:
            assert numpy.array_equal(
                dummy_hypothesis.lsa_propagation_strengths,
                hypothesis.lsa_propagation_strengths)
def main_h5_model(config=Config()):
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: %s", config.input.HEAD)
    head = reader.read_head(config.input.HEAD)

    empty_hypothesis = HypothesisBuilder().build_hypothesis()
    x0_indices = [20]
    x0_values = [0.9]
    e_indices = [70]
    e_values = [0.9]

    hyp_x0_E = HypothesisBuilder(
        head.connectivity.number_of_regions).set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()

    obj = {
        "hyp_x0_E": hyp_x0_E,
        "test_dict": {
            "list0": [
                "l00", 1, {
                    "d020": "a",
                    "d021":
                    [True, False, np.inf, np.nan, None, [], (), {}, ""]
                }
            ]
        }
    }
    logger.info("Original object: %s", obj)

    logger.info("Writing object to h5 file...")
    writer.write_generic(
        obj, os.path.join(config.out.FOLDER_RES, "test_h5_model.h5"))

    h5_model1 = read_h5_model(config.out.FOLDER_RES + "/test_h5_model.h5")
    obj1 = h5_model1.convert_from_h5_model(deepcopy(obj))

    if assert_equal_objects(obj, obj1):
        logger.info("Read identical object: %s", obj1)
    else:
        logger.error("Comparison failed!: %s", obj1)

    h5_model2 = read_h5_model(config.out.FOLDER_RES + "/test_h5_model.h5")
    obj2 = h5_model2.convert_from_h5_model(
        obj={"DiseaseHypothesis": empty_hypothesis})

    if assert_equal_objects(obj, obj2):
        logger.info("Read object as dictionary: %s", obj2)
    else:
        logger.error("Comparison failed!: %s", obj2)
Exemple #3
0
    def test_plot_lsa(self):
        figure_name = "LSAPlot"
        hypo_builder = HypothesisBuilder(config=self.config).set_name(figure_name)
        lsa_hypothesis = hypo_builder.build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))

        figure_file = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(figure_file)

        self.plotter.plot_lsa(lsa_hypothesis, mc, True, None, region_labels=numpy.array(["a"]), title="")

        assert not os.path.exists(figure_file)
Exemple #4
0
    def run_lsa(self, disease_hypothesis, model_configuration):

        jacobian = self._compute_jacobian(model_configuration)

        # Perform eigenvalue decomposition
        eigen_values, eigen_vectors = numpy.linalg.eig(jacobian)

        sorted_indices = numpy.argsort(eigen_values, kind='mergesort')
        self.eigen_values = eigen_values[sorted_indices]
        self.eigen_vectors = eigen_vectors[:, sorted_indices]

        self._ensure_eigen_vectors_number(
            self.eigen_values, model_configuration.e_values,
            model_configuration.x0_values,
            disease_hypothesis.get_all_disease_indices())

        if self.eigen_vectors_number == disease_hypothesis.number_of_regions:
            # Calculate the propagation strength index by summing all eigenvectors
            lsa_propagation_strength = numpy.abs(
                numpy.sum(self.eigen_vectors, axis=1))

        else:
            sorted_indices = max(self.eigen_vectors_number, 1)
            # Calculate the propagation strength index by summing the first n eigenvectors (minimum 1)
            if self.weighted_eigenvector_sum:
                lsa_propagation_strength = numpy.abs(
                    weighted_vector_sum(self.eigen_values[:sorted_indices],
                                        self.eigen_vectors[:, :sorted_indices],
                                        normalize=True))
            else:
                lsa_propagation_strength = numpy.abs(
                    numpy.sum(self.eigen_vectors[:, :sorted_indices], axis=1))

        if self.normalize_propagation_strength:
            # Normalize by the maximum
            lsa_propagation_strength /= numpy.max(lsa_propagation_strength)

        # # TODO: this has to be corrected
        # if self.eigen_vectors_number < 0.2 * disease_hypothesis.number_of_regions:
        #     propagation_strength_elbow = numpy.max([self.get_curve_elbow_point(lsa_propagation_strength),
        #                                     self.eigen_vectors_number])
        # else:
        propagation_strength_elbow = self.get_curve_elbow_point(
            lsa_propagation_strength)
        propagation_indices = lsa_propagation_strength.argsort(
        )[-propagation_strength_elbow:]

        hypothesis_builder = HypothesisBuilder(disease_hypothesis.number_of_regions).\
                                set_attributes_based_on_hypothesis(disease_hypothesis). \
                                    set_lsa_propagation(propagation_indices, lsa_propagation_strength)

        return hypothesis_builder.build_lsa_hypothesis()
Exemple #5
0
    def test_build_hypothesis_from_file_mixed(self):
        hypo_builder = HypothesisBuilder(76, self.config)
        hypo = hypo_builder.build_hypothesis_from_file(self.ep, [55, 56])

        assert hypo.name == "e_x0_Hypothesis"
        assert not len(hypo.e_indices) == 0
        assert not len(hypo.e_values) == 0
        assert not len(hypo.x0_indices) == 0
        assert not len(hypo.x0_values) == 0
        assert len(hypo.w_indices) == 0
        assert len(hypo.w_values) == 0
        assert len(hypo.lsa_propagation_indices) == 0
        assert len(hypo.lsa_propagation_strengths) == 0
Exemple #6
0
    def test_build_empty_hypothesis(self):
        hypo_builder = HypothesisBuilder(config=self.config)
        hypo = hypo_builder.build_hypothesis()

        assert hypo.name == "Hypothesis"
        assert hypo.number_of_regions == 0
        assert len(hypo.x0_indices) == 0
        assert len(hypo.x0_values) == 0
        assert len(hypo.e_indices) == 0
        assert len(hypo.e_values) == 0
        assert len(hypo.w_indices) == 0
        assert len(hypo.w_values) == 0
        assert len(hypo.lsa_propagation_indices) == 0
        assert len(hypo.lsa_propagation_strengths) == 0
Exemple #7
0
    def test_build_hypothesis_from_file_epileptogenicity(self):
        hypo_builder = HypothesisBuilder(76, self.config)
        hypo = hypo_builder.build_hypothesis_from_file(
            self.ep, [55, 56, 57, 58, 59, 60, 61])

        assert hypo.name == "e_Hypothesis"
        assert not len(hypo.e_indices) == 0
        assert not len(hypo.e_values) == 0
        assert len(hypo.x0_indices) == 0
        assert len(hypo.x0_values) == 0
        assert len(hypo.w_indices) == 0
        assert len(hypo.w_values) == 0
        assert len(hypo.lsa_propagation_indices) == 0
        assert len(hypo.lsa_propagation_strengths) == 0
Exemple #8
0
def set_hypotheses(head, config):
    # Formulate a VEP hypothesis manually
    hyp_builder = HypothesisBuilder(head.connectivity.number_of_regions,
                                    config)  # .set_normalize(0.99)

    # Regions of Pathological Excitability hypothesis:
    x0_indices = [2, 24]
    x0_values = [0.01, 0.01]
    hyp_builder.set_x0_hypothesis(x0_indices, x0_values)

    # Regions of Model Epileptogenicity hypothesis:
    e_indices = [1, 26]
    # e_indices = list(range(head.connectivity.number_of_regions))
    # e_indices.remove(2)
    # e_indices.remove(25)
    # e_values = np.zeros((head.connectivity.number_of_regions,)) + 0.01
    # e_values[[1, 26]] = 0.99
    # e_values = np.delete(e_values, [2, 25]).tolist()
    e_values = np.array([1.5, 1.25])  # np.array([0.99] * 2)
    hyp_builder.set_e_hypothesis(e_indices, e_values)

    # Regions of Connectivity hypothesis:
    # w_indices = []  # [(0, 1), (0, 2)]
    # w_values = []  # [0.5, 2.0]
    # hypo_builder.set_w_indices(w_indices).set_w_values(w_values)

    hypothesis1 = hyp_builder.build_hypothesis()

    e_indices = [1, 26]  # [1, 2, 25, 26]
    hypothesis2 = hyp_builder.build_hypothesis_from_file(
        "clinical_hypothesis_postseeg", e_indices)
    # Change something manually if necessary
    # hypothesis2.x0_values = [0.01, 0.01]

    return (hypothesis1, hypothesis2)
Exemple #9
0
    def test_plot_sim_results(self):
        lsa_hypothesis = HypothesisBuilder(
            config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(
            lsa_hypothesis, numpy.array([1]))
        model = build_EpileptorDP2D(mc)

        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "Simulated_TAVG"
        file_name = os.path.join(self.config.out.FOLDER_FIGURES,
                                 figure_name + ".png")
        assert not os.path.exists(file_name)

        data_3D = numpy.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 1, 2]],
                               [[3, 4, 5], [6, 7, 8], [9, 0, 1], [2, 3, 4]],
                               [[5, 6, 7], [8, 9, 0], [1, 2, 3], [4, 5, 6]]])

        self.plotter.plot_simulated_timeseries(
            Timeseries(
                data_3D, {
                    TimeseriesDimensions.SPACE.value: ["r1", "r2", "r3", "r4"],
                    TimeseriesDimensions.VARIABLES.value: ["x1", "x2", "z"]
                }, 0, 1), model, [0])

        assert os.path.exists(file_name)
 def _prepare_model_for_simulation(connectivity):
     hypothesis = HypothesisBuilder(connectivity.number_of_regions).set_e_hypothesis([1, 1],
                                                                                     [0, 10]).build_hypothesis()
     model_configuration_builder = ModelConfigurationBuilder(connectivity.number_of_regions)
     model_configuration = model_configuration_builder.build_model_from_hypothesis(hypothesis,
                                                                                   connectivity.normalized_weights)
     return model_configuration
Exemple #11
0
    def test_build_hypothesis_by_user_preferences(self):
        hypo_builder = HypothesisBuilder(76, self.config).set_x0_hypothesis(
            [1, 2, 3], [1, 1, 1]).set_e_hypothesis([10, 11],
                                                   [1, 1]).set_normalize(0.90)
        hypo = hypo_builder.build_hypothesis()

        assert hypo.name == "e_x0_Hypothesis"
        assert hypo.number_of_regions == 76
        assert len(hypo.x0_indices) == 3
        assert len(hypo.x0_values) == 3
        assert len(hypo.e_indices) == 2
        assert len(hypo.e_values) == 2
        assert len(hypo.w_indices) == 0
        assert len(hypo.w_values) == 0
        assert len(hypo.lsa_propagation_indices) == 0
        assert len(hypo.lsa_propagation_strengths) == 0
Exemple #12
0
def main_sensitivity_analysis(config=Config()):
    # -------------------------------Reading data-----------------------------------
    reader = Reader()
    writer = H5Writer()
    head = reader.read_head(config.input.HEAD)
    # --------------------------Hypothesis definition-----------------------------------
    n_samples = 100
    # Manual definition of hypothesis...:
    x0_indices = [20]
    x0_values = [0.9]
    e_indices = [70]
    e_values = [0.9]
    disease_indices = x0_indices + e_indices
    n_disease = len(disease_indices)
    n_x0 = len(x0_indices)
    n_e = len(e_indices)
    all_regions_indices = np.array(range(head.connectivity.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()
    n_healthy = len(healthy_indices)
    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
    hyp_x0_E = HypothesisBuilder(
        head.connectivity.number_of_regions).set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()
    # Now running the sensitivity analysis:
    logger.info("running sensitivity analysis PSE LSA...")
    for m in METHODS:
        try:
            model_configuration_builder, model_configuration, lsa_service, lsa_hypothesis, sa_results, pse_results = \
                sensitivity_analysis_pse_from_hypothesis(hyp_x0_E,
                                                         head.connectivity.normalized_weights,
                                                         head.connectivity.region_labels,
                                                         n_samples, method=m, param_range=0.1,
                                                         global_coupling=[{"indices": all_regions_indices,
                                                                           "low": 0.0, "high": 2 * K_DEF}],
                                                         healthy_regions_parameters=[
                                                             {"name": "x0_values", "indices": healthy_indices}],
                                                         config=config, save_services=True)
            Plotter(config).plot_lsa(
                lsa_hypothesis,
                model_configuration,
                lsa_service.weighted_eigenvector_sum,
                lsa_service.eigen_vectors_number,
                region_labels=head.connectivity.region_labels,
                pse_results=pse_results,
                title=m + "_PSE_LSA_overview_" + lsa_hypothesis.name,
                lsa_service=lsa_service)
            # , show_flag=True, save_flag=False
            result_file = os.path.join(
                config.out.FOLDER_RES,
                m + "_PSE_LSA_results_" + lsa_hypothesis.name + ".h5")
            writer.write_dictionary(pse_results, result_file)
            result_file = os.path.join(
                config.out.FOLDER_RES,
                m + "_SA_LSA_results_" + lsa_hypothesis.name + ".h5")
            writer.write_dictionary(sa_results, result_file)
        except:
            logger.warning("Method " + m + " failed!")
Exemple #13
0
def main_pse(config=Config()):
    # -------------------------------Reading data-----------------------------------
    reader = Reader()
    writer = H5Writer()
    head = reader.read_head(config.input.HEAD)
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)

    # --------------------------Manual Hypothesis definition-----------------------------------
    n_samples = 100
    x0_indices = [20]
    x0_values = [0.9]
    e_indices = [70]
    e_values = [0.9]
    disease_indices = x0_indices + e_indices
    n_disease = len(disease_indices)

    n_x0 = len(x0_indices)
    n_e = len(e_indices)
    all_regions_indices = np.array(range(head.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()
    n_healthy = len(healthy_indices)
    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
    hyp_x0_E = HypothesisBuilder(
        head.connectivity.number_of_regions).set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()

    # Now running the parameter search analysis:
    logger.info("running PSE LSA...")
    model_config, lsa_service, lsa_hypothesis, pse_res = pse_from_hypothesis(
        hyp_x0_E,
        head.connectivity.normalized_weights,
        head.connectivity.region_labels,
        n_samples,
        param_range=0.1,
        global_coupling=[{
            "indices": all_regions_indices
        }],
        healthy_regions_parameters=[{
            "name": "x0_values",
            "indices": healthy_indices
        }],
        save_services=True)[:4]

    logger.info("Plotting LSA...")
    Plotter(config).plot_lsa(lsa_hypothesis,
                             model_config,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             region_labels=head.connectivity.region_labels,
                             pse_results=pse_res,
                             lsa_service=lsa_service)

    logger.info("Saving LSA results ...")
    writer.write_dictionary(
        pse_res,
        os.path.join(config.out.FOLDER_RES,
                     lsa_hypothesis.name + "_PSE_LSA_results.h5"))
Exemple #14
0
    def test_write_hypothesis(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP, "TestHypothesis.h5")
        dummy_hypothesis = HypothesisBuilder(3).set_e_hypothesis([0], [0.6]).build_hypothesis()

        assert not os.path.exists(test_file)

        self.writer.write_hypothesis(dummy_hypothesis, test_file)

        assert os.path.exists(test_file)
Exemple #15
0
    def test_build_lsa_hypothesis(self):
        hypo_builder = HypothesisBuilder(76,
                                         self.config).set_x0_hypothesis([1, 2],
                                                                        [1, 1])
        hypo = hypo_builder.build_hypothesis()

        lsa_hypo = hypo_builder.set_attributes_based_on_hypothesis(
            hypo).set_lsa_propagation([3, 4], [0.5, 1]).build_lsa_hypothesis()

        assert lsa_hypo.name == "LSA_x0_Hypothesis"
        assert lsa_hypo.number_of_regions == 76
        assert len(lsa_hypo.x0_indices) == 2
        assert len(lsa_hypo.x0_values) == 2
        assert len(lsa_hypo.e_indices) == 0
        assert len(lsa_hypo.e_values) == 0
        assert len(lsa_hypo.w_indices) == 0
        assert len(lsa_hypo.w_values) == 0
        assert len(lsa_hypo.lsa_propagation_indices) == 2
        assert len(lsa_hypo.lsa_propagation_strengths) == 2
Exemple #16
0
    def test_write_pse_service(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP, "TestPSEService.h5")
        hypothesis = HypothesisBuilder(3).set_e_hypothesis([0], [0.6]).build_hypothesis()
        dummy_pse_service = LSAPSEService(hypothesis=hypothesis,
                                          params_pse={"path": [], "indices": [], "name": [], "bounds": []})

        assert not os.path.exists(test_file)

        self.writer.write_pse_service(dummy_pse_service, test_file)

        assert os.path.exists(test_file)
Exemple #17
0
def from_head_to_hypotheses(ep_name, config, plot_head=False):
    # -------------------------------Reading model_data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    if plot_head:
        plotter = Plotter(config)
        plotter.plot_head(head)
    # --------------------------Hypothesis definition-----------------------------------
    # # Manual definition of hypothesis...:
    # x0_indices = [20]
    # x0_values = [0.9]
    # e_indices = [70]
    # e_values = [0.9]
    # disease_values = x0_values + e_values
    # disease_indices = x0_indices + e_indices
    # ...or reading a custom file:
    # FOLDER_RES = os.path.join(data_folder, ep_name)

    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions,
                                     config=config).set_normalize(0.95)

    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(ep_name)

    # This is an example of Epileptogenicity Hypothesis:
    hyp_E = hypo_builder.build_hypothesis_from_file(
        ep_name, e_indices=hyp_x0.x0_indices)

    # This is an example of Mixed Hypothesis:
    x0_indices = [hyp_x0.x0_indices[-1]]
    x0_values = [hyp_x0.x0_values[-1]]
    e_indices = hyp_x0.x0_indices[0:-1].tolist()
    e_values = hyp_x0.x0_values[0:-1].tolist()
    hyp_x0_E = hypo_builder.set_x0_hypothesis(x0_indices, x0_values). \
                                set_e_hypothesis(e_indices, e_values).build_hypothesis()

    hypos = (hyp_x0, hyp_E, hyp_x0_E)

    return head, hypos
Exemple #18
0
    def test_plot_state_space(self):
        lsa_hypothesis = HypothesisBuilder(config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))

        model = "6d"
        zmode = "lin"
        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "_" + "Epileptor_" + model + "_z-" + str(zmode)
        file_name = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(file_name)

        self.plotter.plot_state_space(mc, region_labels=numpy.array(["a"]), special_idx=[0], model=model, zmode=zmode,
                                      figure_name="")

        assert os.path.exists(file_name)
Exemple #19
0
    def test_plot_sim_results(self):
        lsa_hypothesis = HypothesisBuilder(config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))
        model = build_EpileptorDP2D(mc)
        res = prepare_vois_ts_dict(VOIS["EpileptorDP2D"], numpy.array([[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]]))
        res['time'] = numpy.array([1, 2, 3])
        res['time_units'] = 'msec'

        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "EpileptorDP2D_Simulated_TAVG"
        file_name = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(file_name)

        self.plotter.plot_sim_results(model, [0], res)

        assert os.path.exists(file_name)
Exemple #20
0
    def run_lsa(self, disease_hypothesis, model_configuration):

        if self.lsa_method == "auto":
            if numpy.any(model_configuration.x1eq > X1EQ_CR_DEF):
                self.lsa_method = "2D"
            else:
                self.lsa_method = "1D"

        if self.lsa_method == "2D" and numpy.all(model_configuration.x1eq <= X1EQ_CR_DEF):
            warning("LSA with the '2D' method (on the 2D Epileptor model) will not produce interpretable results when"
                    " the equilibrium point of the system is not supercritical (unstable)!")

        jacobian = self._compute_jacobian(model_configuration)

        # Perform eigenvalue decomposition
        eigen_values, eigen_vectors = numpy.linalg.eig(jacobian)
        eigen_values = numpy.real(eigen_values)
        eigen_vectors = numpy.real(eigen_vectors)
        sorted_indices = numpy.argsort(eigen_values, kind='mergesort')
        if self.lsa_method == "2D":
            sorted_indices = sorted_indices[::-1]
        self.eigen_vectors = eigen_vectors[:, sorted_indices]
        self.eigen_values = eigen_values[sorted_indices]

        self._ensure_eigen_vectors_number(self.eigen_values[:disease_hypothesis.number_of_regions],
                                          model_configuration.e_values, model_configuration.x0_values,
                                          disease_hypothesis.regions_disease_indices)

        if self.eigen_vectors_number == disease_hypothesis.number_of_regions:
            # Calculate the propagation strength index by summing all eigenvectors
            lsa_propagation_strength = numpy.abs(numpy.sum(self.eigen_vectors, axis=1))

        else:
            sorted_indices = max(self.eigen_vectors_number, 1)
            # Calculate the propagation strength index by summing the first n eigenvectors (minimum 1)
            if self.weighted_eigenvector_sum:
                lsa_propagation_strength = \
                    numpy.abs(weighted_vector_sum(numpy.array(self.eigen_values[:self.eigen_vectors_number]),
                                                  numpy.array(self.eigen_vectors[:, :self.eigen_vectors_number]),
                                                              normalize=True))
            else:
                lsa_propagation_strength = \
                    numpy.abs(numpy.sum(self.eigen_vectors[:, :self.eigen_vectors_number], axis=1))

        if self.lsa_method == "2D":
            # lsa_propagation_strength = lsa_propagation_strength[:disease_hypothesis.number_of_regions]
            # or
            # lsa_propagation_strength = numpy.where(lsa_propagation_strength[:disease_hypothesis.number_of_regions] >=
            #                                        lsa_propagation_strength[disease_hypothesis.number_of_regions:],
            #                                        lsa_propagation_strength[:disease_hypothesis.number_of_regions],
            #                                        lsa_propagation_strength[disease_hypothesis.number_of_regions:])
            # or
            lsa_propagation_strength = numpy.sqrt(lsa_propagation_strength[:disease_hypothesis.number_of_regions]**2 +
                                                  lsa_propagation_strength[disease_hypothesis.number_of_regions:]**2)
            lsa_propagation_strength = numpy.log10(lsa_propagation_strength)
            lsa_propagation_strength -= lsa_propagation_strength.min()


        if self.normalize_propagation_strength:
            # Normalize by the maximum
            lsa_propagation_strength /= numpy.max(lsa_propagation_strength)

        # # TODO: this has to be corrected
        # if self.eigen_vectors_number < 0.2 * disease_hypothesis.number_of_regions:
        #     propagation_strength_elbow = numpy.max([self.get_curve_elbow_point(lsa_propagation_strength),
        #                                     self.eigen_vectors_number])
        # else:
        propagation_strength_elbow = self.get_curve_elbow_point(lsa_propagation_strength)
        propagation_indices = lsa_propagation_strength.argsort()[-propagation_strength_elbow:]

        hypothesis_builder = HypothesisBuilder(disease_hypothesis.number_of_regions). \
                                set_attributes_based_on_hypothesis(disease_hypothesis). \
                                    set_name(disease_hypothesis.name + "_LSA"). \
                                        set_lsa_propagation(propagation_indices, lsa_propagation_strength)

        return hypothesis_builder.build_lsa_hypothesis()
Exemple #21
0
def main_fit_sim_hyplsa(
        stan_model_name="vep_sde_ins.stan",
        empirical_file="",
        observation_model=OBSERVATION_MODELS.SEEG_LOGPOWER.value,
        sensors_lbls=[],
        sensor_id=0,
        times_on_off=[],
        fitmethod="optimizing",
        pse_flag=True,
        fit_flag=True,
        config=Config(),
        **kwargs):
    def path(name):
        if len(name) > 0:
            return base_path + "_" + name + ".h5"
        else:
            return base_path + ".h5"

    # Prepare necessary services:
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    reader = H5Reader()
    writer = H5Writer()
    plotter = Plotter(config)

    # Read head
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    sensors = head.get_sensors_id(sensor_ids=sensor_id)
    plotter.plot_head(head)

    # Set hypotheses:
    hypotheses = set_hypotheses(head, config)

    # ------------------------------Stan model and service--------------------------------------
    model_code_path = os.path.join(config.generic.PROBLSTC_MODELS_PATH,
                                   stan_model_name + ".stan")
    stan_service = CmdStanService(model_name=stan_model_name,
                                  model_code_path=model_code_path,
                                  fitmethod=fitmethod,
                                  config=config)
    stan_service.set_or_compile_model()

    for hyp in hypotheses[:1]:
        base_path = os.path.join(config.out.FOLDER_RES, hyp.name)
        # Set model configuration and compute LSA
        model_configuration, lsa_hypothesis, pse_results = \
            set_model_config_LSA(head, hyp, reader, config, K_unscaled=3*K_DEF, tau1=TAU1_DEF, tau0=TAU0_DEF,
                                 pse_flag=pse_flag, plotter=plotter, writer=writer)

        # -------------------------- Get model_data and observation signals: -------------------------------------------
        # Create model inversion service (stateless)
        problstc_model_file = path("ProblstcModel")
        model_data_file = path("ModelData")
        target_data_file = path("TargetData")
        if os.path.isfile(problstc_model_file) and os.path.isfile(
                model_data_file) and os.path.isfile(target_data_file):
            # Read existing probabilistic model and model data...
            probabilistic_model = reader.read_probabilistic_model(
                problstc_model_file)
            model_data = stan_service.load_model_data_from_file(
                model_data_path=model_data_file)
            target_data = reader.read_timeseries(target_data_file)
        else:
            model_inversion = SDEModelInversionService()

            # ...or generate a new probabilistic model and model data
            probabilistic_model = \
                SDEProbabilisticModelBuilder(model_name="vep_sde_ins.stan", model_config=model_configuration,
                                             parameters=[XModes.X0MODE.value, "sigma_"+XModes.X0MODE.value,
                                                        "x1_init", "z_init", "tau1",  # "tau0", "K",
                                                        "sigma", "dZt", "epsilon", "scale", "offset"],  # "dX1t",
                                             xmode=XModes.X0MODE.value, priors_mode=PriorsModes.NONINFORMATIVE.value,
                                             sde_mode=SDE_MODES.NONCENTERED.value, observation_model=observation_model).\
                                                                                                       generate_model()

            # Update active model's active region nodes
            e_values = pse_results.get("e_values_mean",
                                       model_configuration.e_values)
            lsa_propagation_strength = pse_results.get(
                "lsa_propagation_strengths_mean",
                lsa_hypothesis.lsa_propagation_strengths)
            model_inversion.active_e_th = 0.2
            probabilistic_model = \
                model_inversion.update_active_regions(probabilistic_model, e_values=e_values,
                                                      lsa_propagation_strengths=lsa_propagation_strength, reset=True)

            # Now some scripts for settting and preprocessing target signals:
            if os.path.isfile(empirical_file):
                probabilistic_model.target_data_type = TARGET_DATA_TYPE.EMPIRICAL.value
                # -------------------------- Get empirical data (preprocess edf if necessary) --------------------------
                signals = set_empirical_data(
                    empirical_file,
                    path("ts_empirical"),
                    head,
                    sensors_lbls,
                    sensor_id,
                    probabilistic_model.time_length,
                    times_on_off,
                    label_strip_fun=lambda s: s.split("POL ")[-1],
                    plotter=plotter,
                    title_prefix=hyp.name,
                    bipolar=False)
            else:
                # -------------------------- Get simulated data (simulate if necessary) -------------------------------
                probabilistic_model.target_data_type = TARGET_DATA_TYPE.SYNTHETIC.value
                signals, simulator = \
                    set_simulated_target_data(path("ts"), model_configuration, head, lsa_hypothesis, probabilistic_model,
                                              sensor_id, sim_type="fitting", times_on_off=times_on_off, config=config,
                                              plotter=plotter, title_prefix=hyp.name, bipolar=False, filter_flag=False,
                                              envelope_flag=False, smooth_flag=False, **kwargs)

            # -------------------------- Select and set target data from signals ---------------------------------------
            if probabilistic_model.observation_model in OBSERVATION_MODELS.SEEG.value:
                model_inversion.auto_selection = "correlation-power"
                model_inversion.sensors_per_electrode = 2
            target_data, probabilistic_model, gain_matrix = \
                model_inversion.set_target_data_and_time(signals, probabilistic_model, head=head, sensors=sensors)

            plotter.plot_probabilistic_model(probabilistic_model,
                                             hyp.name + " Probabilistic Model")
            plotter.plot_raster({'Target Signals': target_data.squeezed},
                                target_data.time_line,
                                time_units=target_data.time_unit,
                                title=hyp.name + ' Target Signals raster',
                                offset=0.1,
                                labels=target_data.space_labels)
            plotter.plot_timeseries({'Target Signals': target_data.squeezed},
                                    target_data.time_line,
                                    time_units=target_data.time_unit,
                                    title=hyp.name + ' Target Signals',
                                    labels=target_data.space_labels)

            writer.\
              write_probabilistic_model(probabilistic_model, model_configuration.number_of_regions, problstc_model_file)
            writer.write_timeseries(target_data, target_data_file)

            # Construct the stan model data dict:
            model_data = build_stan_model_data_dict(
                probabilistic_model,
                target_data.squeezed,
                model_configuration.model_connectivity,
                gain_matrix,
                time=target_data.time_line)
            # # ...or interface with INS stan models
            # model_data = build_stan_model_data_dict_to_interface_ins(probabilistic_model, target_data.squeezed,
            #                                                          model_configuration.model_connectivity, gain_matrix,
            #                                                          time=target_data.time_line)
            writer.write_dictionary(model_data, model_data_file)

        # -------------------------- Fit and get estimates: ------------------------------------------------------------
        n_chains_or_runs = 4
        output_samples = max(int(np.round(1000.0 / n_chains_or_runs)), 500)
        # Sampling (HMC)
        num_samples = output_samples
        num_warmup = 1000
        max_depth = 12
        delta = 0.9
        # ADVI or optimization:
        iter = 1000000
        tol_rel_obj = 1e-6
        if fitmethod.find("sampl") >= 0:
            skip_samples = num_warmup
        else:
            skip_samples = 0
        prob_model_name = probabilistic_model.name.split(".")[0]
        if fit_flag:
            estimates, samples, summary = stan_service.fit(
                debug=0,
                simulate=0,
                model_data=model_data,
                refresh=1,
                n_chains_or_runs=n_chains_or_runs,
                iter=iter,
                tol_rel_obj=tol_rel_obj,
                num_warmup=num_warmup,
                num_samples=num_samples,
                max_depth=max_depth,
                delta=delta,
                save_warmup=1,
                plot_warmup=1,
                **kwargs)
            writer.write_generic(estimates, path(prob_model_name + "_FitEst"))
            writer.write_generic(samples,
                                 path(prob_model_name + "_FitSamples"))
            if summary is not None:
                writer.write_generic(summary,
                                     path(prob_model_name + "_FitSummary"))
        else:
            estimates, samples, summary = stan_service.read_output()
            if fitmethod.find("sampl") >= 0:
                plotter.plot_HMC(samples,
                                 figure_name=hyp.name + "-" + prob_model_name +
                                 " HMC NUTS trace")

        # Model comparison:
        # scale_signal, offset_signal, time_scale, epsilon, sigma -> 5 (+ K = 6)
        # x0[active] -> probabilistic_model.model.number_of_active_regions
        # x1init[active], zinit[active] -> 2 * probabilistic_model.number_of_active_regions
        # dZt[active, t] -> probabilistic_model.number_of_active_regions * (probabilistic_model.time_length-1)
        number_of_total_params =\
            5 + probabilistic_model.number_of_active_regions * (3 + (probabilistic_model.time_length-1))
        info_crit = \
            stan_service.compute_information_criteria(samples, number_of_total_params, skip_samples=skip_samples,
                                                      # parameters=["amplitude_star", "offset_star", "epsilon_star",
                                                      #                  "sigma_star", "time_scale_star", "x0_star",
                                                      #                  "x_init_star", "z_init_star", "z_eta_star"],
                                                      merge_chains_or_runs_flag=False)

        writer.write_generic(info_crit, path(prob_model_name + "_InfoCrit"))

        Rhat = stan_service.get_Rhat(summary)
        # Interface backwards with INS stan models
        # estimates, samples, Rhat, model_data = \
        #     convert_params_names_from_ins([estimates, samples, Rhat, model_data])
        if fitmethod.find("opt") < 0:
            stats = {"Rhat": Rhat}
        else:
            stats = None

        # -------------------------- Plot fitting results: ------------------------------------------------------------
        # if stan_service.fitmethod.find("opt") < 0:
        plotter.plot_fit_results(
            estimates,
            samples,
            model_data,
            target_data,
            probabilistic_model,
            info_crit,
            stats=stats,
            pair_plot_params=["tau1", "sigma", "epsilon", "scale",
                              "offset"],  #  "K",
            region_violin_params=["x0", "x1_init", "z_init"],
            regions_labels=head.connectivity.region_labels,
            skip_samples=skip_samples,
            title_prefix=hyp.name + "-" + prob_model_name)

        # -------------------------- Reconfigure model after fitting:---------------------------------------------------
        for id_est, est in enumerate(ensure_list(estimates)):
            K = est.get("K", model_configuration.K)
            tau1 = est.get("tau1", model_configuration.tau1)
            tau0 = est.get("tau0", model_configuration.tau0)
            fit_model_configuration_builder = \
                ModelConfigurationBuilder(hyp.number_of_regions, K=K * hyp.number_of_regions, tau1=tau1, tau0=tau0)
            x0_values_fit = model_configuration.x0_values
            x0_values_fit[probabilistic_model.active_regions] = \
                fit_model_configuration_builder._compute_x0_values_from_x0_model(est['x0'])
            hyp_fit = HypothesisBuilder().set_nr_of_regions(head.connectivity.number_of_regions).\
                                          set_name('fit' + str(id_est+1) + "_" + hyp.name).\
                                          set_x0_hypothesis(list(probabilistic_model.active_regions),
                                                            x0_values_fit[probabilistic_model.active_regions]).\
                                          build_hypothesis()
            base_path = os.path.join(config.out.FOLDER_RES, hyp_fit.name)
            writer.write_hypothesis(hyp_fit, path(""))

            model_configuration_fit = \
                fit_model_configuration_builder.build_model_from_hypothesis(hyp_fit,  # est["MC"]
                                                                            model_configuration.model_connectivity)

            writer.write_model_configuration(model_configuration_fit,
                                             path("ModelConfig"))

            # Plot nullclines and equilibria of model configuration
            plotter.plot_state_space(
                model_configuration_fit,
                region_labels=head.connectivity.region_labels,
                special_idx=probabilistic_model.active_regions,
                model="6d",
                zmode="lin",
                figure_name=hyp_fit.name + "_Nullclines and equilibria")
        logger.info("Done!")
Exemple #22
0
    if user_home == "/home/denis":
        output = os.path.join(user_home, 'Dropbox', 'Work', 'VBtech', 'VEP', "results", "INScluster")
        config = Config(head_folder=head_folder, output_base=output, separate_by_run=False)
    elif user_home == "/Users/lia.domide":
        config = Config(head_folder="/WORK/episense/tvb-epilepsy/data/TVB3/Head",
                        raw_data_folder="/WORK/episense/tvb-epilepsy/data/TVB3/ts_seizure")
    else:
        output = os.path.join(user_home, 'Dropbox', 'Work', 'VBtech', 'VEP', "results", "fit")
        config = Config(head_folder=head_folder, output_base=output, separate_by_run=False)

    # Read head
    reader = H5Reader()

    head = reader.read_head(config.input.HEAD)

    hyp_builder = HypothesisBuilder(head.connectivity.number_of_regions, config).set_normalize(0.99)
    e_indices = [1, 26]  # [1, 2, 25, 26]
    hypothesis = hyp_builder.build_hypothesis_from_file("clinical_hypothesis_postseeg", e_indices)

    model_configuration = \
        ModelConfigurationBuilder(head.connectivity.number_of_regions).\
            build_model_from_E_hypothesis(hypothesis, head.connectivity.normalized_weights)

    statistical_model = SDEProbabilisticModelBuilder(model_config=model_configuration).generate_model()
    H5Writer().write_probabilistic_model(statistical_model, config.out.FOLDER_RES, "TestStatsModelorig.h5")

    statistical_model2 = reader.read_probabilistic_model(os.path.join(config.out.FOLDER_RES, "TestStatsModelorig.h5"))
    H5Writer().write_probabilistic_model(statistical_model2, config.out.FOLDER_RES, "TestStatsModelread.h5")

Exemple #23
0
def main_vep(config=Config(),
             ep_name=EP_NAME,
             K_unscaled=K_DEF,
             ep_indices=[],
             hyp_norm=0.99,
             manual_hypos=[],
             sim_type="paper",
             pse_flag=PSE_FLAG,
             sa_pse_flag=SA_PSE_FLAG,
             sim_flag=SIM_FLAG,
             n_samples=1000,
             test_write_read=False):
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    plotter = Plotter(config)
    plotter.plot_head(head)
    if test_write_read:
        writer.write_head(head, os.path.join(config.out.FOLDER_RES, "Head"))
    # --------------------------Hypothesis definition-----------------------------------

    hypotheses = []
    # Reading a h5 file:

    if len(ep_name) > 0:
        # For an Excitability Hypothesis you leave e_indices empty
        # For a Mixed Hypothesis: you give as e_indices some indices for values > 0
        # For an Epileptogenicity Hypothesis: you give as e_indices all indices for values > 0
        hyp_file = HypothesisBuilder(head.connectivity.number_of_regions, config=config).set_normalize(hyp_norm). \
            build_hypothesis_from_file(ep_name, e_indices=ep_indices)
        hyp_file.name += ep_name
        # print(hyp_file.string_regions_disease(head.connectivity.region_labels))
        hypotheses.append(hyp_file)

    hypotheses += manual_hypos

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("\n\nRunning hypothesis: " + hyp.name)

        all_regions_indices = np.array(range(head.number_of_regions))
        healthy_indices = np.delete(all_regions_indices,
                                    hyp.regions_disease_indices).tolist()

        logger.info("\n\nCreating model configuration...")
        model_config_builder = ModelConfigurationBuilder(hyp.number_of_regions,
                                                         K=K_unscaled,
                                                         tau1=TAU1_DEF,
                                                         tau0=TAU0_DEF)
        mcs_file = os.path.join(config.out.FOLDER_RES,
                                hyp.name + "_model_config_builder.h5")
        writer.write_model_configuration_builder(model_config_builder,
                                                 mcs_file)
        if test_write_read:
            logger.info(
                "Written and read model configuration services are identical?: "
                + str(
                    assert_equal_objects(
                        model_config_builder,
                        reader.read_model_configuration_builder(mcs_file),
                        logger=logger)))
        # Fix healthy regions to default equilibria:
        # model_configuration = \
        #        model_config_builder.build_model_from_E_hypothesis(hyp, head.connectivity.normalized_weights)
        # Fix healthy regions to default x0s:
        model_configuration = \
                model_config_builder.build_model_from_hypothesis(hyp, head.connectivity.normalized_weights)
        mc_path = os.path.join(config.out.FOLDER_RES,
                               hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, mc_path)
        if test_write_read:
            logger.info(
                "Written and read model configuration are identical?: " + str(
                    assert_equal_objects(model_configuration,
                                         reader.read_model_configuration(
                                             mc_path),
                                         logger=logger)))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 "6d",
                                 head.connectivity.region_labels,
                                 special_idx=hyp.regions_disease_indices,
                                 zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")

        logger.info("\n\nRunning LSA...")
        lsa_service = LSAService(eigen_vectors_number=1)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)

        lsa_path = os.path.join(config.out.FOLDER_RES,
                                lsa_hypothesis.name + "_LSA.h5")
        lsa_config_path = os.path.join(config.out.FOLDER_RES,
                                       lsa_hypothesis.name + "_LSAConfig.h5")
        writer.write_hypothesis(lsa_hypothesis, lsa_path)
        writer.write_lsa_service(lsa_service, lsa_config_path)
        if test_write_read:
            logger.info("Written and read LSA services are identical?: " + str(
                assert_equal_objects(lsa_service,
                                     reader.read_lsa_service(lsa_config_path),
                                     logger=logger)))
            logger.info(
                "Written and read LSA hypotheses are identical (no input check)?: "
                + str(
                    assert_equal_objects(lsa_hypothesis,
                                         reader.read_hypothesis(lsa_path),
                                         logger=logger)))
        plotter.plot_lsa(lsa_hypothesis,
                         model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels,
                         None,
                         lsa_service=lsa_service)

        if pse_flag:
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nRunning PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(
                n_samples,
                lsa_hypothesis,
                head.connectivity.normalized_weights,
                model_config_builder,
                lsa_service,
                head.connectivity.region_labels,
                param_range=0.1,
                global_coupling=[{
                    "indices": all_regions_indices
                }],
                healthy_regions_parameters=[{
                    "name": "x0_values",
                    "indices": healthy_indices
                }],
                logger=logger,
                save_flag=True)[0]
            plotter.plot_lsa(lsa_hypothesis, model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels, pse_results)

            pse_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_PSE_LSA_results.h5")
            writer.write_dictionary(pse_results, pse_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read sensitivity analysis parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_results,
                                             reader.read_dictionary(
                                                 pse_lsa_path),
                                             logger=logger)))

        if sa_pse_flag:
            # --------------Sensitivity Analysis Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nrunning sensitivity analysis PSE LSA...")
            sa_results, pse_sa_results = \
                sensitivity_analysis_pse_from_lsa_hypothesis(n_samples, lsa_hypothesis,
                                                             head.connectivity.normalized_weights,
                                                             model_config_builder, lsa_service,
                                                             head.connectivity.region_labels,
                                                             method="sobol", param_range=0.1,
                                                             global_coupling=[{"indices": all_regions_indices,
                                                                               "bounds": [0.0, 2 *
                                                                                          model_config_builder.K_unscaled[
                                                                                              0]]}],
                                                             healthy_regions_parameters=[
                                                                 {"name": "x0_values", "indices": healthy_indices}],
                                                             config=config)
            plotter.plot_lsa(lsa_hypothesis,
                             model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels,
                             pse_sa_results,
                             title="SA PSE Hypothesis Overview")

            sa_pse_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_PSE_LSA_results.h5")
            sa_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_LSA_results.h5")
            writer.write_dictionary(pse_sa_results, sa_pse_path)
            writer.write_dictionary(sa_results, sa_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read sensitivity analysis results are identical?: "
                    + str(
                        assert_equal_objects(sa_results,
                                             reader.read_dictionary(
                                                 sa_lsa_path),
                                             logger=logger)))
                logger.info(
                    "Written and read sensitivity analysis parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_sa_results,
                                             reader.read_dictionary(
                                                 sa_pse_path),
                                             logger=logger)))

        if sim_flag:
            # --------------------------Simulation preparations-----------------------------------
            # If you choose model...
            # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
            # EpileptorDP: similar to the TVB Epileptor + optional variations,
            # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
            # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
            #      -x0, Iext1, Iext2, slope and K become noisy state variables,
            #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
            #      -correlated noise is also used
            # We don't want any time delays for the moment
            head.connectivity.tract_lengths *= config.simulator.USE_TIME_DELAYS_FLAG

            sim_types = ensure_list(sim_type)
            integrator = "HeunStochastic"
            for sim_type in sim_types:
                # ------------------------------Simulation--------------------------------------
                logger.info(
                    "\n\nConfiguring simulation from model_configuration...")
                sim_builder = SimulatorBuilder(config.simulator.MODE)
                if isequal_string(sim_type, "realistic"):
                    model.tau0 = 60000.0
                    model.tau1 = 0.2
                    model.slope = 0.25
                    model.Iext2 = 0.45
                    model.pmode = np.array(
                        "z")  # np.array("None") to opt out for feedback
                    sim_settings = \
                        sim_builder.set_fs(2048.0).set_fs_monitor(1024.0).set_simulated_period(60000).build_sim_settings()
                    sim_settings.noise_type = COLORED_NOISE
                    sim_settings.noise_ntau = 20
                    integrator = "Dop853Stochastic"
                elif isequal_string(sim_type, "fitting"):
                    sim_settings = sim_builder.set_model_name("EpileptorDP2D").set_fs(2048.0).set_fs_monitor(2048.0).\
                                                                    set_simulated_period(2000).build_sim_settings()
                    sim_settings.noise_intensity = 1e-5
                    model = sim_builder.generate_model_tvb(model_configuration)
                    model.tau0 = 300.0
                    model.tau1 = 0.5
                elif isequal_string(sim_type, "reduced"):
                    sim_settings = sim_builder.set_model_name("EpileptorDP2D").set_fs(4096.0). \
                                                                    set_simulated_period(1000).build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)
                elif isequal_string(sim_type, "paper"):
                    sim_builder.set_model_name("Epileptor")
                    sim_settings = sim_builder.build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)
                else:
                    sim_settings = sim_builder.build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)

                sim, sim_settings, model = \
                    sim_builder.build_simulator_TVB_from_model_sim_settings(model_configuration,head.connectivity,
                                                                            model, sim_settings, integrator=integrator)

                # Integrator and initial conditions initialization.
                # By default initial condition is set right on the equilibrium point.
                writer.write_simulator_model(
                    sim.model, sim.connectivity.number_of_regions,
                    os.path.join(config.out.FOLDER_RES,
                                 lsa_hypothesis.name + "_sim_model.h5"))
                logger.info("\n\nSimulating...")
                sim_output, status = sim.launch_simulation(
                    report_every_n_monitor_steps=100)

                sim_path = os.path.join(
                    config.out.FOLDER_RES,
                    lsa_hypothesis.name + "_sim_settings.h5")
                writer.write_simulation_settings(sim.simulation_settings,
                                                 sim_path)
                if test_write_read:
                    # TODO: find out why it cannot set monitor expressions
                    logger.info(
                        "Written and read simulation settings are identical?: "
                        + str(
                            assert_equal_objects(
                                sim.simulation_settings,
                                reader.read_simulation_settings(sim_path),
                                logger=logger)))
                if not status:
                    logger.warning("\nSimulation failed!")
                else:
                    time = np.array(sim_output.time_line).astype("f")
                    logger.info("\n\nSimulated signal return shape: %s",
                                sim_output.shape)
                    logger.info("Time: %s - %s", time[0], time[-1])
                    logger.info("Values: %s - %s", sim_output.data.min(),
                                sim_output.data.max())
                    if not status:
                        logger.warning("\nSimulation failed!")
                    else:
                        sim_output, seeg = compute_seeg_and_write_ts_to_h5(
                            sim_output,
                            sim.model,
                            head.sensorsSEEG,
                            os.path.join(config.out.FOLDER_RES,
                                         model._ui_name + "_ts.h5"),
                            seeg_gain_mode="lin",
                            hpf_flag=True,
                            hpf_low=10.0,
                            hpf_high=512.0)

                    # Plot results
                    plotter.plot_simulated_timeseries(
                        sim_output,
                        sim.model,
                        lsa_hypothesis.lsa_propagation_indices,
                        seeg_list=seeg,
                        spectral_raster_plot=False,
                        title_prefix=hyp.name,
                        spectral_options={"log_scale": True})
Exemple #24
0
def main_vep(config=Config(), sim_type="default", test_write_read=False,
             pse_flag=PSE_FLAG, sa_pse_flag=SA_PSE_FLAG, sim_flag=SIM_FLAG):
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    plotter = Plotter(config)
    plotter.plot_head(head)
    if test_write_read:
        writer.write_head(head, os.path.join(config.out.FOLDER_RES, "Head"))
    # --------------------------Hypothesis definition-----------------------------------
    n_samples = 100
    # # Manual definition of hypothesis...:
    # x0_indices = [20]
    # x0_values = [0.9]
    # e_indices = [70]
    # e_values = [0.9]
    # disease_values = x0_values + e_values
    # disease_indices = x0_indices + e_indices
    # ...or reading a custom file:

    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions, config=config).set_normalize(0.95)

    # This is an example of Epileptogenicity Hypothesis: you give as ep all indices for values > 0
    hyp_E = hypo_builder.build_hypothesis_from_file(EP_NAME, e_indices=[1, 3, 16, 25])
    # print(hyp_E.string_regions_disease(head.connectivity.region_labels))

    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(EP_NAME)

    # # This is an example of Mixed Hypothesis set manually by the user:
    # x0_indices = [hyp_x0.x0_indices[-1]]
    # x0_values = [hyp_x0.x0_values[-1]]
    # e_indices = hyp_x0.x0_indices[0:-1].tolist()
    # e_values = hyp_x0.x0_values[0:-1].tolist()
    # hyp_x0_E = hypo_builder.set_x0_hypothesis(x0_indices, x0_values). \
    #                             set_e_hypothesis(e_indices, e_values).build_hypothesis()

    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis set from file:
    all_regions_indices = np.array(range(head.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, hyp_E.x0_indices + hyp_E.e_indices).tolist()
    hyp_x0_E = hypo_builder.build_hypothesis_from_file(EP_NAME, e_indices=[16, 25])

    hypotheses = (hyp_x0_E, hyp_x0, hyp_E)

    # --------------------------Simulation preparations-----------------------------------
    # If you choose model...
    # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
    # EpileptorDP: similar to the TVB Epileptor + optional variations,
    # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
    # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
    #      -x0, Iext1, Iext2, slope and K become noisy state variables,
    #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
    #      -multiplicative correlated noise is also used
    # We don't want any time delays for the moment
    head.connectivity.tract_lengths *= config.simulator.USE_TIME_DELAYS_FLAG
    sim_builder = SimulatorBuilder(config.simulator.MODE)
    if isequal_string(sim_type, "realistic"):
        sim_settings = sim_builder.set_model_name("EpileptorDPrealistic").set_simulated_period(50000).build_sim_settings()
        sim_settings.noise_type = COLORED_NOISE
        sim_settings.noise_ntau = 10
    elif isequal_string(sim_type, "fitting"):
        sim_settings = sim_builder.set_model_name("EpileptorDP2D").build_sim_settings()
        sim_settings.noise_intensity = 1e-3
    elif isequal_string(sim_type, "paper"):
        sim_builder.set_model_name("Epileptor")
        sim_settings = sim_builder.build_sim_settings()
    else:
        sim_settings = sim_builder.build_sim_settings()

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("\n\nRunning hypothesis: " + hyp.name)
        logger.info("\n\nCreating model configuration...")
        builder = ModelConfigurationBuilder(hyp.number_of_regions)

        mcs_file = os.path.join(config.out.FOLDER_RES, hyp.name + "_model_config_service.h5")
        writer.write_model_configuration_builder(builder, mcs_file)
        if test_write_read:
            logger.info("Written and read model configuration services are identical?: " +
                        str(assert_equal_objects(builder, reader.read_model_configuration_builder(mcs_file),
                                                 logger=logger)))

        if hyp.type == "Epileptogenicity":
            model_configuration = builder.build_model_from_E_hypothesis(hyp, head.connectivity.normalized_weights)
        else:
            model_configuration = builder.build_model_from_hypothesis(hyp, head.connectivity.normalized_weights)
        mc_path = os.path.join(config.out.FOLDER_RES, hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, mc_path)
        if test_write_read:
            logger.info("Written and read model configuration are identical?: " +
                        str(assert_equal_objects(model_configuration, reader.read_model_configuration(mc_path),
                                                 logger=logger)))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration, "6d", head.connectivity.region_labels,
                                 special_idx=hyp_x0.x0_indices + hyp_E.e_indices, zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")

        logger.info("\n\nRunning LSA...")
        lsa_service = LSAService(eigen_vectors_number=None, weighted_eigenvector_sum=True)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)

        lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_LSA.h5")
        lsa_config_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_LSAConfig.h5")
        writer.write_hypothesis(lsa_hypothesis, lsa_path)
        writer.write_lsa_service(lsa_service, lsa_config_path)
        if test_write_read:
            logger.info("Written and read LSA services are identical?: " +
                        str(assert_equal_objects(lsa_service, reader.read_lsa_service(lsa_config_path), logger=logger)))
            logger.info("Written and read LSA hypotheses are identical (no input check)?: " +
                        str(assert_equal_objects(lsa_hypothesis, reader.read_hypothesis(lsa_path), logger=logger)))
        plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number, head.connectivity.region_labels, None)

        if pse_flag:
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nRunning PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(lsa_hypothesis,
                                                  head.connectivity.normalized_weights,
                                                  head.connectivity.region_labels,
                                                  n_samples, param_range=0.1,
                                                  global_coupling=[{"indices": all_regions_indices}],
                                                  healthy_regions_parameters=[
                                                      {"name": "x0_values", "indices": healthy_indices}],
                                                  model_configuration_builder=builder,
                                                  lsa_service=lsa_service, logger=logger, save_flag=True)[0]
            plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number, head.connectivity.region_labels, pse_results)

            pse_lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_PSE_LSA_results.h5")
            writer.write_dictionary(pse_results, pse_lsa_path)
            if test_write_read:
                logger.info("Written and read sensitivity analysis parameter search results are identical?: " +
                            str(assert_equal_objects(pse_results, reader.read_dictionary(pse_lsa_path), logger=logger)))

        if sa_pse_flag:
            # --------------Sensitivity Analysis Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nrunning sensitivity analysis PSE LSA...")
            sa_results, pse_sa_results = \
                sensitivity_analysis_pse_from_lsa_hypothesis(lsa_hypothesis,
                                                             head.connectivity.normalized_weights,
                                                             head.connectivity.region_labels,
                                                             n_samples, method="sobol", param_range=0.1,
                                                             global_coupling=[{"indices": all_regions_indices,
                                                                               "bounds": [0.0, 2 *
                                                                                          builder.K_unscaled[
                                                                                              0]]}],
                                                             healthy_regions_parameters=[
                                                                 {"name": "x0_values", "indices": healthy_indices}],
                                                             model_configuration_builder=builder,
                                                             lsa_service=lsa_service, config=config)
            plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number, head.connectivity.region_labels, pse_sa_results,
                             title="SA PSE Hypothesis Overview")

            sa_pse_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_SA_PSE_LSA_results.h5")
            sa_lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_SA_LSA_results.h5")
            writer.write_dictionary(pse_sa_results, sa_pse_path)
            writer.write_dictionary(sa_results, sa_lsa_path)
            if test_write_read:
                logger.info("Written and read sensitivity analysis results are identical?: " +
                            str(assert_equal_objects(sa_results, reader.read_dictionary(sa_lsa_path), logger=logger)))
                logger.info("Written and read sensitivity analysis parameter search results are identical?: " +
                            str(assert_equal_objects(pse_sa_results, reader.read_dictionary(sa_pse_path),
                                                     logger=logger)))

        if sim_flag:
            # ------------------------------Simulation--------------------------------------
            logger.info("\n\nConfiguring simulation from model_configuration...")
            model = sim_builder.generate_model(model_configuration)
            if isequal_string(sim_type, "realistic"):
                model.tau0 = 30000.0
                model.tau1 = 0.2
                model.slope = 0.25
            elif isequal_string(sim_type, "fitting"):
                model.tau0 = 10.0
                model.tau1 = 0.5
            sim, sim_settings, model = sim_builder.build_simulator_TVB_from_model_sim_settings(model_configuration,
                                                                                 head.connectivity, model, sim_settings)

            # Integrator and initial conditions initialization.
            # By default initial condition is set right on the equilibrium point.
            writer.write_generic(sim.model, config.out.FOLDER_RES, lsa_hypothesis.name + "_sim_model.h5")
            logger.info("\n\nSimulating...")
            ttavg, tavg_data, status = sim.launch_simulation(report_every_n_monitor_steps=100)

            sim_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_sim_settings.h5")
            writer.write_simulation_settings(sim.simulation_settings, sim_path)
            if test_write_read:
                # TODO: find out why it cannot set monitor expressions
                logger.info("Written and read simulation settings are identical?: " +
                            str(assert_equal_objects(sim.simulation_settings,
                                                     reader.read_simulation_settings(sim_path), logger=logger)))
            if not status:
                logger.warning("\nSimulation failed!")
            else:
                time = np.array(ttavg, dtype='float32')
                output_sampling_time = np.mean(np.diff(time))
                tavg_data = tavg_data[:, :, :, 0]
                logger.info("\n\nSimulated signal return shape: %s", tavg_data.shape)
                logger.info("Time: %s - %s", time[0], time[-1])
                logger.info("Values: %s - %s", tavg_data.min(), tavg_data.max())
                # Variables of interest in a dictionary:
                res_ts = prepare_vois_ts_dict(sim_settings.monitor_expressions, tavg_data)
                res_ts['time'] = time
                res_ts['time_units'] = 'msec'
                res_ts = compute_seeg_and_write_ts_h5_file(config.out.FOLDER_RES, lsa_hypothesis.name + "_ts.h5",
                                                                 sim.model, res_ts, output_sampling_time,
                                                                 sim_settings.simulated_period,
                                                                 hpf_flag=True, hpf_low=10.0, hpf_high=512.0,
                                                                 sensors_list=head.sensorsSEEG)
                # Plot results
                if model._ui_name is "EpileptorDP2D":
                    spectral_raster_plot = False
                    trajectories_plot = True
                else:
                    spectral_raster_plot = "lfp"
                    trajectories_plot = False
                #TODO: plotting fails when spectral_raster_plot="lfp". Denis will fix this
                plotter.plot_sim_results(sim.model, lsa_hypothesis.lsa_propagation_indices, res_ts,
                                         head.sensorsSEEG, hpf_flag=True, trajectories_plot=trajectories_plot,
                                         spectral_raster_plot=False, log_scale=True)
Exemple #25
0
def main_cc_vep(config,
                head_folder,
                ep_name="clinical_hypothesis",
                x0_indices=[],
                pse_flag=False,
                sim_flag=True):
    if not (os.path.isdir(config.out.FOLDER_RES)):
        os.mkdir(config.out.FOLDER_RES)
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)

    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: %s", head_folder)
    head = reader.read_head(head_folder)
    plotter = Plotter(config)
    plotter.plot_head(head)

    # --------------------------Hypothesis definition-----------------------------------
    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions)
    all_regions_indices = np.array(range(head.number_of_regions))

    # This is an example of Epileptogenicity Hypothesis:
    hyp_E = hypo_builder.build_hypothesis_from_file(ep_name, x0_indices)
    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(ep_name)

    disease_indices = hyp_E.e_indices + hyp_x0.x0_indices
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()

    if len(x0_indices) > 0:
        # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
        disease_values = reader.read_epileptogenicity(head_folder,
                                                      name=ep_name)
        disease_values = disease_values.tolist()
        x0_values = []
        for ix0 in x0_indices:
            ind = disease_indices.index(ix0)
            del disease_indices[ind]
            x0_values.append(disease_values.pop(ind))
        e_indices = disease_indices
        e_values = np.array(disease_values)
        x0_values = np.array(x0_values)
        hyp_x0_E = hypo_builder.set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()
        hypotheses = (hyp_E, hyp_x0, hyp_x0_E)

    else:
        hypotheses = (
            hyp_E,
            hyp_x0,
        )

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("Running hypothesis: %s", hyp.name)
        logger.info("Creating model configuration...")
        builder = ModelConfigurationBuilder(hyp.number_of_regions)
        writer.write_model_configuration_builder(
            builder,
            os.path.join(config.out.FOLDER_RES, "model_config_service.h5"))
        if hyp.type == "Epileptogenicity":
            model_configuration = builder.build_model_from_E_hypothesis(
                hyp, head.connectivity.normalized_weights)
        else:
            model_configuration = builder.build_model_from_hypothesis(
                hyp, head.connectivity.normalized_weights)
        writer.write_model_configuration(
            model_configuration,
            os.path.join(config.out.FOLDER_RES, "ModelConfiguration.h5"))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 region_labels=head.connectivity.region_labels,
                                 special_idx=disease_indices,
                                 model="2d",
                                 zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")
        logger.info("Running LSA...")
        lsa_service = LSAService(eigen_vectors_number=None,
                                 weighted_eigenvector_sum=True)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)
        writer.write_hypothesis(
            lsa_hypothesis,
            os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + ".h5"))
        writer.write_lsa_service(
            lsa_service,
            os.path.join(config.out.FOLDER_RES, "lsa_config_service.h5"))
        plotter.plot_lsa(lsa_hypothesis, model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels, None)
        if pse_flag:
            n_samples = 100
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("Running PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(
                lsa_hypothesis,
                head.connectivity.normalized_weights,
                head.connectivity.region_labels,
                n_samples,
                param_range=0.1,
                global_coupling=[{
                    "indices": all_regions_indices
                }],
                healthy_regions_parameters=[{
                    "name": "x0_values",
                    "indices": healthy_indices
                }],
                model_configuration_builder=builder,
                lsa_service=lsa_service,
                save_flag=True,
                folder_res=config.out.FOLDER_RES,
                filename="PSE_LSA",
                logger=logger)[0]
            plotter.plot_lsa(lsa_hypothesis,
                             model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels,
                             pse_results,
                             title="Hypothesis PSE LSA Overview")
        if sim_flag:
            config.out.subfolder = "simulations"
            for folder in (config.out.FOLDER_RES, config.out.FOLDER_FIGURES):
                if not (os.path.isdir(folder)):
                    os.mkdir(folder)
            dynamical_models = ["EpileptorDP2D", "EpileptorDPrealistic"]

            for dynamical_model, sim_type in zip(dynamical_models,
                                                 ["fitting", "realistic"]):
                ts_file = None  # os.path.join(sim_folder_res, dynamical_model + "_ts.h5")
                vois_ts_dict = \
                    from_model_configuration_to_simulation(model_configuration, head, lsa_hypothesis,
                                                           sim_type=sim_type, dynamical_model=dynamical_model,
                                                           ts_file=ts_file, plot_flag=True, config=config)