def _prepare_model_for_simulation(connectivity):
     hypothesis = HypothesisBuilder(connectivity.number_of_regions).set_e_hypothesis([1, 1],
                                                                                     [0, 10]).build_hypothesis()
     model_configuration_builder = ModelConfigurationBuilder(connectivity.number_of_regions)
     model_configuration = model_configuration_builder.build_model_from_hypothesis(hypothesis,
                                                                                   connectivity.normalized_weights)
     return model_configuration
Exemple #2
0
def from_hypothesis_to_model_config_lsa(hyp,
                                        head,
                                        eigen_vectors_number=None,
                                        weighted_eigenvector_sum=True,
                                        config=Config(),
                                        save_flag=None,
                                        plot_flag=None,
                                        **kwargs):
    logger.info("\n\nRunning hypothesis: " + hyp.name)
    logger.info("\n\nCreating model configuration...")
    if save_flag is None:
        save_flag = config.figures.SAVE_FLAG
    if plot_flag is None:
        plot_flag = config.figures.SHOW_FLAG
    builder = ModelConfigurationBuilder(hyp.number_of_regions, **kwargs)
    if hyp.type == "Epileptogenicity":
        model_configuration = builder.build_model_from_E_hypothesis(
            hyp, head.connectivity.normalized_weights)
    else:
        model_configuration = builder.build_model_from_hypothesis(
            hyp, head.connectivity.normalized_weights)
    logger.info("\n\nRunning LSA...")
    lsa_service = LSAService(eigen_vectors_number=eigen_vectors_number,
                             weighted_eigenvector_sum=weighted_eigenvector_sum)
    lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)
    if save_flag:
        writer = H5Writer()
        path_mc = os.path.join(config.out.FOLDER_RES,
                               hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, path_mc)
        writer.write_hypothesis(
            lsa_hypothesis,
            os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + ".h5"))
    if plot_flag:
        plotter = Plotter(config)
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 "6d",
                                 head.connectivity.region_labels,
                                 special_idx=hyp.regions_disease_indices,
                                 zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")
        plotter.plot_lsa(lsa_hypothesis,
                         model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels,
                         None,
                         lsa_service=lsa_service)
    return model_configuration, lsa_hypothesis, builder, lsa_service
Exemple #3
0
    def test_plot_sim_results(self):
        lsa_hypothesis = HypothesisBuilder(
            config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(
            lsa_hypothesis, numpy.array([1]))
        model = build_EpileptorDP2D(mc)

        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "Simulated_TAVG"
        file_name = os.path.join(self.config.out.FOLDER_FIGURES,
                                 figure_name + ".png")
        assert not os.path.exists(file_name)

        data_3D = numpy.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 1, 2]],
                               [[3, 4, 5], [6, 7, 8], [9, 0, 1], [2, 3, 4]],
                               [[5, 6, 7], [8, 9, 0], [1, 2, 3], [4, 5, 6]]])

        self.plotter.plot_simulated_timeseries(
            Timeseries(
                data_3D, {
                    TimeseriesDimensions.SPACE.value: ["r1", "r2", "r3", "r4"],
                    TimeseriesDimensions.VARIABLES.value: ["x1", "x2", "z"]
                }, 0, 1), model, [0])

        assert os.path.exists(file_name)
    def test_read_model_configuration_builder(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestModelConfigService.h5")
        dummy_mc_service = ModelConfigurationBuilder(3)
        self.writer.write_model_configuration_builder(dummy_mc_service,
                                                      test_file)

        mc_service = self.reader.read_model_configuration_builder(test_file)

        assert dummy_mc_service.number_of_regions == mc_service.number_of_regions
        assert numpy.array_equal(dummy_mc_service.x0_values,
                                 mc_service.x0_values)
        assert numpy.array_equal(dummy_mc_service.K_unscaled,
                                 mc_service.K_unscaled)
        assert numpy.array_equal(dummy_mc_service.e_values,
                                 mc_service.e_values)
        assert dummy_mc_service.yc == mc_service.yc
        assert dummy_mc_service.Iext1 == mc_service.Iext1
        assert dummy_mc_service.Iext2 == mc_service.Iext2
        assert dummy_mc_service.a == mc_service.a
        assert dummy_mc_service.b == mc_service.b
        assert dummy_mc_service.d == mc_service.d
        assert dummy_mc_service.slope == mc_service.slope
        assert dummy_mc_service.s == mc_service.s
        assert dummy_mc_service.gamma == mc_service.gamma
        assert dummy_mc_service.tau1 == mc_service.tau1
        assert dummy_mc_service.tau0 == mc_service.tau0
        assert dummy_mc_service.zmode == mc_service.zmode
        assert dummy_mc_service.x1eq_mode == mc_service.x1eq_mode
        assert dummy_mc_service.K.all() == mc_service.K.all()
        assert dummy_mc_service.x0cr == mc_service.x0cr
        assert dummy_mc_service.rx0 == mc_service.rx0
Exemple #5
0
def start_lsa_run(hypothesis, model_connectivity, config=Config()):
    logger.info("creating model configuration...")
    model_configuration_builder = ModelConfigurationBuilder(
        hypothesis.number_of_regions)
    model_configuration = model_configuration_builder.build_model_from_hypothesis(
        hypothesis, model_connectivity)

    logger.info("running LSA...")
    lsa_service = LSAService(
        eigen_vectors_number_selection=config.calcul.
        EIGENVECTORS_NUMBER_SELECTION,
        eigen_vectors_number=None,
        weighted_eigenvector_sum=config.calcul.WEIGHTED_EIGENVECTOR_SUM,
        normalize_propagation_strength=False)
    lsa_hypothesis = lsa_service.run_lsa(hypothesis, model_configuration)

    return model_configuration_builder, model_configuration, lsa_service, lsa_hypothesis
Exemple #6
0
    def test_write_model_configuration_builder(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP, "TestModelConfigurationService.h5")
        dummy_mc_service = ModelConfigurationBuilder(3)

        assert not os.path.exists(test_file)

        self.writer.write_model_configuration_builder(dummy_mc_service, test_file)

        assert os.path.exists(test_file)
Exemple #7
0
    def test_plot_lsa(self):
        figure_name = "LSAPlot"
        hypo_builder = HypothesisBuilder(config=self.config).set_name(figure_name)
        lsa_hypothesis = hypo_builder.build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))

        figure_file = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(figure_file)

        self.plotter.plot_lsa(lsa_hypothesis, mc, True, None, region_labels=numpy.array(["a"]), title="")

        assert not os.path.exists(figure_file)
Exemple #8
0
    def test_plot_state_space(self):
        lsa_hypothesis = HypothesisBuilder(config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))

        model = "6d"
        zmode = "lin"
        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "_" + "Epileptor_" + model + "_z-" + str(zmode)
        file_name = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(file_name)

        self.plotter.plot_state_space(mc, region_labels=numpy.array(["a"]), special_idx=[0], model=model, zmode=zmode,
                                      figure_name="")

        assert os.path.exists(file_name)
Exemple #9
0
    def test_plot_sim_results(self):
        lsa_hypothesis = HypothesisBuilder(config=self.config).build_lsa_hypothesis()
        mc = ModelConfigurationBuilder().build_model_from_E_hypothesis(lsa_hypothesis, numpy.array([1]))
        model = build_EpileptorDP2D(mc)
        res = prepare_vois_ts_dict(VOIS["EpileptorDP2D"], numpy.array([[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]]))
        res['time'] = numpy.array([1, 2, 3])
        res['time_units'] = 'msec'

        # TODO: this figure_name is constructed inside plot method, so it can change
        figure_name = "EpileptorDP2D_Simulated_TAVG"
        file_name = os.path.join(self.config.out.FOLDER_FIGURES, figure_name + ".png")
        assert not os.path.exists(file_name)

        self.plotter.plot_sim_results(model, [0], res)

        assert os.path.exists(file_name)
Exemple #10
0
    def read_model_configuration_builder(self, path):
        """
        :param path: Path towards a ModelConfigurationService H5 file
        :return: ModelConfigurationService object
        """
        self.logger.info("Starting to read ModelConfigurationService from: %s" % path)
        h5_file = h5py.File(path, 'r', libver='latest')

        from tvb_epilepsy.service.model_configuration_builder import ModelConfigurationBuilder
        mc_service = ModelConfigurationBuilder()

        for dataset in h5_file.keys():
            mc_service.set_attribute(dataset, h5_file["/" + dataset][()])

        for attr in h5_file.attrs.keys():
            mc_service.set_attribute(attr, h5_file.attrs[attr])

        h5_file.close()
        return mc_service
Exemple #11
0
 def update_hypo_model_config(
     self,
     hypothesis,
     params,
     conn_matrix,
     model_config_service_input=None,
     yc=YC_DEF,
     Iext1=I_EXT1_DEF,
     K=K_DEF,
     a=A_DEF,
     b=B_DEF,
     tau1=TAU1_DEF,
     tau0=TAU0_DEF,
     x1eq_mode="optimize",
 ):
     # Copy and update hypothesis
     hypo_copy = deepcopy(hypothesis)
     hypo_copy.update_for_pse(params, self.params_paths,
                              self.params_indices)
     # Create a ModelConfigService and update it
     if isinstance(model_config_service_input, ModelConfigurationBuilder):
         model_configuration_builder = deepcopy(model_config_service_input)
     else:
         model_configuration_builder = ModelConfigurationBuilder(
             hypo_copy.number_of_regions,
             yc=yc,
             Iext1=Iext1,
             K=K,
             a=a,
             b=b,
             tau1=tau1,
             tau0=tau0,
             x1eq_mode=x1eq_mode)
     model_configuration_builder.set_attributes_from_pse(
         params, self.params_paths, self.params_indices)
     # Obtain Modelconfiguration
     if hypo_copy.type == "Epileptogenicity":
         model_configuration = model_configuration_builder.build_model_from_E_hypothesis(
             hypo_copy, conn_matrix)
     else:
         model_configuration = model_configuration_builder.build_model_from_hypothesis(
             hypo_copy, conn_matrix)
     return hypo_copy, model_configuration
Exemple #12
0
    if user_home == "/home/denis":
        output = os.path.join(user_home, 'Dropbox', 'Work', 'VBtech', 'VEP', "results", "INScluster")
        config = Config(head_folder=head_folder, output_base=output, separate_by_run=False)
    elif user_home == "/Users/lia.domide":
        config = Config(head_folder="/WORK/episense/tvb-epilepsy/data/TVB3/Head",
                        raw_data_folder="/WORK/episense/tvb-epilepsy/data/TVB3/ts_seizure")
    else:
        output = os.path.join(user_home, 'Dropbox', 'Work', 'VBtech', 'VEP', "results", "fit")
        config = Config(head_folder=head_folder, output_base=output, separate_by_run=False)

    # Read head
    reader = H5Reader()

    head = reader.read_head(config.input.HEAD)

    hyp_builder = HypothesisBuilder(head.connectivity.number_of_regions, config).set_normalize(0.99)
    e_indices = [1, 26]  # [1, 2, 25, 26]
    hypothesis = hyp_builder.build_hypothesis_from_file("clinical_hypothesis_postseeg", e_indices)

    model_configuration = \
        ModelConfigurationBuilder(head.connectivity.number_of_regions).\
            build_model_from_E_hypothesis(hypothesis, head.connectivity.normalized_weights)

    statistical_model = SDEProbabilisticModelBuilder(model_config=model_configuration).generate_model()
    H5Writer().write_probabilistic_model(statistical_model, config.out.FOLDER_RES, "TestStatsModelorig.h5")

    statistical_model2 = reader.read_probabilistic_model(os.path.join(config.out.FOLDER_RES, "TestStatsModelorig.h5"))
    H5Writer().write_probabilistic_model(statistical_model2, config.out.FOLDER_RES, "TestStatsModelread.h5")

Exemple #13
0
def main_vep(config=Config(),
             ep_name=EP_NAME,
             K_unscaled=K_DEF,
             ep_indices=[],
             hyp_norm=0.99,
             manual_hypos=[],
             sim_type="paper",
             pse_flag=PSE_FLAG,
             sa_pse_flag=SA_PSE_FLAG,
             sim_flag=SIM_FLAG,
             n_samples=1000,
             test_write_read=False):
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    plotter = Plotter(config)
    plotter.plot_head(head)
    if test_write_read:
        writer.write_head(head, os.path.join(config.out.FOLDER_RES, "Head"))
    # --------------------------Hypothesis definition-----------------------------------

    hypotheses = []
    # Reading a h5 file:

    if len(ep_name) > 0:
        # For an Excitability Hypothesis you leave e_indices empty
        # For a Mixed Hypothesis: you give as e_indices some indices for values > 0
        # For an Epileptogenicity Hypothesis: you give as e_indices all indices for values > 0
        hyp_file = HypothesisBuilder(head.connectivity.number_of_regions, config=config).set_normalize(hyp_norm). \
            build_hypothesis_from_file(ep_name, e_indices=ep_indices)
        hyp_file.name += ep_name
        # print(hyp_file.string_regions_disease(head.connectivity.region_labels))
        hypotheses.append(hyp_file)

    hypotheses += manual_hypos

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("\n\nRunning hypothesis: " + hyp.name)

        all_regions_indices = np.array(range(head.number_of_regions))
        healthy_indices = np.delete(all_regions_indices,
                                    hyp.regions_disease_indices).tolist()

        logger.info("\n\nCreating model configuration...")
        model_config_builder = ModelConfigurationBuilder(hyp.number_of_regions,
                                                         K=K_unscaled,
                                                         tau1=TAU1_DEF,
                                                         tau0=TAU0_DEF)
        mcs_file = os.path.join(config.out.FOLDER_RES,
                                hyp.name + "_model_config_builder.h5")
        writer.write_model_configuration_builder(model_config_builder,
                                                 mcs_file)
        if test_write_read:
            logger.info(
                "Written and read model configuration services are identical?: "
                + str(
                    assert_equal_objects(
                        model_config_builder,
                        reader.read_model_configuration_builder(mcs_file),
                        logger=logger)))
        # Fix healthy regions to default equilibria:
        # model_configuration = \
        #        model_config_builder.build_model_from_E_hypothesis(hyp, head.connectivity.normalized_weights)
        # Fix healthy regions to default x0s:
        model_configuration = \
                model_config_builder.build_model_from_hypothesis(hyp, head.connectivity.normalized_weights)
        mc_path = os.path.join(config.out.FOLDER_RES,
                               hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, mc_path)
        if test_write_read:
            logger.info(
                "Written and read model configuration are identical?: " + str(
                    assert_equal_objects(model_configuration,
                                         reader.read_model_configuration(
                                             mc_path),
                                         logger=logger)))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 "6d",
                                 head.connectivity.region_labels,
                                 special_idx=hyp.regions_disease_indices,
                                 zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")

        logger.info("\n\nRunning LSA...")
        lsa_service = LSAService(eigen_vectors_number=1)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)

        lsa_path = os.path.join(config.out.FOLDER_RES,
                                lsa_hypothesis.name + "_LSA.h5")
        lsa_config_path = os.path.join(config.out.FOLDER_RES,
                                       lsa_hypothesis.name + "_LSAConfig.h5")
        writer.write_hypothesis(lsa_hypothesis, lsa_path)
        writer.write_lsa_service(lsa_service, lsa_config_path)
        if test_write_read:
            logger.info("Written and read LSA services are identical?: " + str(
                assert_equal_objects(lsa_service,
                                     reader.read_lsa_service(lsa_config_path),
                                     logger=logger)))
            logger.info(
                "Written and read LSA hypotheses are identical (no input check)?: "
                + str(
                    assert_equal_objects(lsa_hypothesis,
                                         reader.read_hypothesis(lsa_path),
                                         logger=logger)))
        plotter.plot_lsa(lsa_hypothesis,
                         model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels,
                         None,
                         lsa_service=lsa_service)

        if pse_flag:
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nRunning PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(
                n_samples,
                lsa_hypothesis,
                head.connectivity.normalized_weights,
                model_config_builder,
                lsa_service,
                head.connectivity.region_labels,
                param_range=0.1,
                global_coupling=[{
                    "indices": all_regions_indices
                }],
                healthy_regions_parameters=[{
                    "name": "x0_values",
                    "indices": healthy_indices
                }],
                logger=logger,
                save_flag=True)[0]
            plotter.plot_lsa(lsa_hypothesis, model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels, pse_results)

            pse_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_PSE_LSA_results.h5")
            writer.write_dictionary(pse_results, pse_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read sensitivity analysis parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_results,
                                             reader.read_dictionary(
                                                 pse_lsa_path),
                                             logger=logger)))

        if sa_pse_flag:
            # --------------Sensitivity Analysis Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nrunning sensitivity analysis PSE LSA...")
            sa_results, pse_sa_results = \
                sensitivity_analysis_pse_from_lsa_hypothesis(n_samples, lsa_hypothesis,
                                                             head.connectivity.normalized_weights,
                                                             model_config_builder, lsa_service,
                                                             head.connectivity.region_labels,
                                                             method="sobol", param_range=0.1,
                                                             global_coupling=[{"indices": all_regions_indices,
                                                                               "bounds": [0.0, 2 *
                                                                                          model_config_builder.K_unscaled[
                                                                                              0]]}],
                                                             healthy_regions_parameters=[
                                                                 {"name": "x0_values", "indices": healthy_indices}],
                                                             config=config)
            plotter.plot_lsa(lsa_hypothesis,
                             model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels,
                             pse_sa_results,
                             title="SA PSE Hypothesis Overview")

            sa_pse_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_PSE_LSA_results.h5")
            sa_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_LSA_results.h5")
            writer.write_dictionary(pse_sa_results, sa_pse_path)
            writer.write_dictionary(sa_results, sa_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read sensitivity analysis results are identical?: "
                    + str(
                        assert_equal_objects(sa_results,
                                             reader.read_dictionary(
                                                 sa_lsa_path),
                                             logger=logger)))
                logger.info(
                    "Written and read sensitivity analysis parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_sa_results,
                                             reader.read_dictionary(
                                                 sa_pse_path),
                                             logger=logger)))

        if sim_flag:
            # --------------------------Simulation preparations-----------------------------------
            # If you choose model...
            # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
            # EpileptorDP: similar to the TVB Epileptor + optional variations,
            # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
            # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
            #      -x0, Iext1, Iext2, slope and K become noisy state variables,
            #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
            #      -correlated noise is also used
            # We don't want any time delays for the moment
            head.connectivity.tract_lengths *= config.simulator.USE_TIME_DELAYS_FLAG

            sim_types = ensure_list(sim_type)
            integrator = "HeunStochastic"
            for sim_type in sim_types:
                # ------------------------------Simulation--------------------------------------
                logger.info(
                    "\n\nConfiguring simulation from model_configuration...")
                sim_builder = SimulatorBuilder(config.simulator.MODE)
                if isequal_string(sim_type, "realistic"):
                    model.tau0 = 60000.0
                    model.tau1 = 0.2
                    model.slope = 0.25
                    model.Iext2 = 0.45
                    model.pmode = np.array(
                        "z")  # np.array("None") to opt out for feedback
                    sim_settings = \
                        sim_builder.set_fs(2048.0).set_fs_monitor(1024.0).set_simulated_period(60000).build_sim_settings()
                    sim_settings.noise_type = COLORED_NOISE
                    sim_settings.noise_ntau = 20
                    integrator = "Dop853Stochastic"
                elif isequal_string(sim_type, "fitting"):
                    sim_settings = sim_builder.set_model_name("EpileptorDP2D").set_fs(2048.0).set_fs_monitor(2048.0).\
                                                                    set_simulated_period(2000).build_sim_settings()
                    sim_settings.noise_intensity = 1e-5
                    model = sim_builder.generate_model_tvb(model_configuration)
                    model.tau0 = 300.0
                    model.tau1 = 0.5
                elif isequal_string(sim_type, "reduced"):
                    sim_settings = sim_builder.set_model_name("EpileptorDP2D").set_fs(4096.0). \
                                                                    set_simulated_period(1000).build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)
                elif isequal_string(sim_type, "paper"):
                    sim_builder.set_model_name("Epileptor")
                    sim_settings = sim_builder.build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)
                else:
                    sim_settings = sim_builder.build_sim_settings()
                    model = sim_builder.generate_model_tvb(model_configuration)

                sim, sim_settings, model = \
                    sim_builder.build_simulator_TVB_from_model_sim_settings(model_configuration,head.connectivity,
                                                                            model, sim_settings, integrator=integrator)

                # Integrator and initial conditions initialization.
                # By default initial condition is set right on the equilibrium point.
                writer.write_simulator_model(
                    sim.model, sim.connectivity.number_of_regions,
                    os.path.join(config.out.FOLDER_RES,
                                 lsa_hypothesis.name + "_sim_model.h5"))
                logger.info("\n\nSimulating...")
                sim_output, status = sim.launch_simulation(
                    report_every_n_monitor_steps=100)

                sim_path = os.path.join(
                    config.out.FOLDER_RES,
                    lsa_hypothesis.name + "_sim_settings.h5")
                writer.write_simulation_settings(sim.simulation_settings,
                                                 sim_path)
                if test_write_read:
                    # TODO: find out why it cannot set monitor expressions
                    logger.info(
                        "Written and read simulation settings are identical?: "
                        + str(
                            assert_equal_objects(
                                sim.simulation_settings,
                                reader.read_simulation_settings(sim_path),
                                logger=logger)))
                if not status:
                    logger.warning("\nSimulation failed!")
                else:
                    time = np.array(sim_output.time_line).astype("f")
                    logger.info("\n\nSimulated signal return shape: %s",
                                sim_output.shape)
                    logger.info("Time: %s - %s", time[0], time[-1])
                    logger.info("Values: %s - %s", sim_output.data.min(),
                                sim_output.data.max())
                    if not status:
                        logger.warning("\nSimulation failed!")
                    else:
                        sim_output, seeg = compute_seeg_and_write_ts_to_h5(
                            sim_output,
                            sim.model,
                            head.sensorsSEEG,
                            os.path.join(config.out.FOLDER_RES,
                                         model._ui_name + "_ts.h5"),
                            seeg_gain_mode="lin",
                            hpf_flag=True,
                            hpf_low=10.0,
                            hpf_high=512.0)

                    # Plot results
                    plotter.plot_simulated_timeseries(
                        sim_output,
                        sim.model,
                        lsa_hypothesis.lsa_propagation_indices,
                        seeg_list=seeg,
                        spectral_raster_plot=False,
                        title_prefix=hyp.name,
                        spectral_options={"log_scale": True})
Exemple #14
0
def main_vep(config=Config(), sim_type="default", test_write_read=False,
             pse_flag=PSE_FLAG, sa_pse_flag=SA_PSE_FLAG, sim_flag=SIM_FLAG):
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    plotter = Plotter(config)
    plotter.plot_head(head)
    if test_write_read:
        writer.write_head(head, os.path.join(config.out.FOLDER_RES, "Head"))
    # --------------------------Hypothesis definition-----------------------------------
    n_samples = 100
    # # Manual definition of hypothesis...:
    # x0_indices = [20]
    # x0_values = [0.9]
    # e_indices = [70]
    # e_values = [0.9]
    # disease_values = x0_values + e_values
    # disease_indices = x0_indices + e_indices
    # ...or reading a custom file:

    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions, config=config).set_normalize(0.95)

    # This is an example of Epileptogenicity Hypothesis: you give as ep all indices for values > 0
    hyp_E = hypo_builder.build_hypothesis_from_file(EP_NAME, e_indices=[1, 3, 16, 25])
    # print(hyp_E.string_regions_disease(head.connectivity.region_labels))

    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(EP_NAME)

    # # This is an example of Mixed Hypothesis set manually by the user:
    # x0_indices = [hyp_x0.x0_indices[-1]]
    # x0_values = [hyp_x0.x0_values[-1]]
    # e_indices = hyp_x0.x0_indices[0:-1].tolist()
    # e_values = hyp_x0.x0_values[0:-1].tolist()
    # hyp_x0_E = hypo_builder.set_x0_hypothesis(x0_indices, x0_values). \
    #                             set_e_hypothesis(e_indices, e_values).build_hypothesis()

    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis set from file:
    all_regions_indices = np.array(range(head.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, hyp_E.x0_indices + hyp_E.e_indices).tolist()
    hyp_x0_E = hypo_builder.build_hypothesis_from_file(EP_NAME, e_indices=[16, 25])

    hypotheses = (hyp_x0_E, hyp_x0, hyp_E)

    # --------------------------Simulation preparations-----------------------------------
    # If you choose model...
    # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
    # EpileptorDP: similar to the TVB Epileptor + optional variations,
    # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
    # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
    #      -x0, Iext1, Iext2, slope and K become noisy state variables,
    #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
    #      -multiplicative correlated noise is also used
    # We don't want any time delays for the moment
    head.connectivity.tract_lengths *= config.simulator.USE_TIME_DELAYS_FLAG
    sim_builder = SimulatorBuilder(config.simulator.MODE)
    if isequal_string(sim_type, "realistic"):
        sim_settings = sim_builder.set_model_name("EpileptorDPrealistic").set_simulated_period(50000).build_sim_settings()
        sim_settings.noise_type = COLORED_NOISE
        sim_settings.noise_ntau = 10
    elif isequal_string(sim_type, "fitting"):
        sim_settings = sim_builder.set_model_name("EpileptorDP2D").build_sim_settings()
        sim_settings.noise_intensity = 1e-3
    elif isequal_string(sim_type, "paper"):
        sim_builder.set_model_name("Epileptor")
        sim_settings = sim_builder.build_sim_settings()
    else:
        sim_settings = sim_builder.build_sim_settings()

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("\n\nRunning hypothesis: " + hyp.name)
        logger.info("\n\nCreating model configuration...")
        builder = ModelConfigurationBuilder(hyp.number_of_regions)

        mcs_file = os.path.join(config.out.FOLDER_RES, hyp.name + "_model_config_service.h5")
        writer.write_model_configuration_builder(builder, mcs_file)
        if test_write_read:
            logger.info("Written and read model configuration services are identical?: " +
                        str(assert_equal_objects(builder, reader.read_model_configuration_builder(mcs_file),
                                                 logger=logger)))

        if hyp.type == "Epileptogenicity":
            model_configuration = builder.build_model_from_E_hypothesis(hyp, head.connectivity.normalized_weights)
        else:
            model_configuration = builder.build_model_from_hypothesis(hyp, head.connectivity.normalized_weights)
        mc_path = os.path.join(config.out.FOLDER_RES, hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, mc_path)
        if test_write_read:
            logger.info("Written and read model configuration are identical?: " +
                        str(assert_equal_objects(model_configuration, reader.read_model_configuration(mc_path),
                                                 logger=logger)))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration, "6d", head.connectivity.region_labels,
                                 special_idx=hyp_x0.x0_indices + hyp_E.e_indices, zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")

        logger.info("\n\nRunning LSA...")
        lsa_service = LSAService(eigen_vectors_number=None, weighted_eigenvector_sum=True)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)

        lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_LSA.h5")
        lsa_config_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_LSAConfig.h5")
        writer.write_hypothesis(lsa_hypothesis, lsa_path)
        writer.write_lsa_service(lsa_service, lsa_config_path)
        if test_write_read:
            logger.info("Written and read LSA services are identical?: " +
                        str(assert_equal_objects(lsa_service, reader.read_lsa_service(lsa_config_path), logger=logger)))
            logger.info("Written and read LSA hypotheses are identical (no input check)?: " +
                        str(assert_equal_objects(lsa_hypothesis, reader.read_hypothesis(lsa_path), logger=logger)))
        plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number, head.connectivity.region_labels, None)

        if pse_flag:
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nRunning PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(lsa_hypothesis,
                                                  head.connectivity.normalized_weights,
                                                  head.connectivity.region_labels,
                                                  n_samples, param_range=0.1,
                                                  global_coupling=[{"indices": all_regions_indices}],
                                                  healthy_regions_parameters=[
                                                      {"name": "x0_values", "indices": healthy_indices}],
                                                  model_configuration_builder=builder,
                                                  lsa_service=lsa_service, logger=logger, save_flag=True)[0]
            plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number, head.connectivity.region_labels, pse_results)

            pse_lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_PSE_LSA_results.h5")
            writer.write_dictionary(pse_results, pse_lsa_path)
            if test_write_read:
                logger.info("Written and read sensitivity analysis parameter search results are identical?: " +
                            str(assert_equal_objects(pse_results, reader.read_dictionary(pse_lsa_path), logger=logger)))

        if sa_pse_flag:
            # --------------Sensitivity Analysis Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nrunning sensitivity analysis PSE LSA...")
            sa_results, pse_sa_results = \
                sensitivity_analysis_pse_from_lsa_hypothesis(lsa_hypothesis,
                                                             head.connectivity.normalized_weights,
                                                             head.connectivity.region_labels,
                                                             n_samples, method="sobol", param_range=0.1,
                                                             global_coupling=[{"indices": all_regions_indices,
                                                                               "bounds": [0.0, 2 *
                                                                                          builder.K_unscaled[
                                                                                              0]]}],
                                                             healthy_regions_parameters=[
                                                                 {"name": "x0_values", "indices": healthy_indices}],
                                                             model_configuration_builder=builder,
                                                             lsa_service=lsa_service, config=config)
            plotter.plot_lsa(lsa_hypothesis, model_configuration, lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number, head.connectivity.region_labels, pse_sa_results,
                             title="SA PSE Hypothesis Overview")

            sa_pse_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_SA_PSE_LSA_results.h5")
            sa_lsa_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_SA_LSA_results.h5")
            writer.write_dictionary(pse_sa_results, sa_pse_path)
            writer.write_dictionary(sa_results, sa_lsa_path)
            if test_write_read:
                logger.info("Written and read sensitivity analysis results are identical?: " +
                            str(assert_equal_objects(sa_results, reader.read_dictionary(sa_lsa_path), logger=logger)))
                logger.info("Written and read sensitivity analysis parameter search results are identical?: " +
                            str(assert_equal_objects(pse_sa_results, reader.read_dictionary(sa_pse_path),
                                                     logger=logger)))

        if sim_flag:
            # ------------------------------Simulation--------------------------------------
            logger.info("\n\nConfiguring simulation from model_configuration...")
            model = sim_builder.generate_model(model_configuration)
            if isequal_string(sim_type, "realistic"):
                model.tau0 = 30000.0
                model.tau1 = 0.2
                model.slope = 0.25
            elif isequal_string(sim_type, "fitting"):
                model.tau0 = 10.0
                model.tau1 = 0.5
            sim, sim_settings, model = sim_builder.build_simulator_TVB_from_model_sim_settings(model_configuration,
                                                                                 head.connectivity, model, sim_settings)

            # Integrator and initial conditions initialization.
            # By default initial condition is set right on the equilibrium point.
            writer.write_generic(sim.model, config.out.FOLDER_RES, lsa_hypothesis.name + "_sim_model.h5")
            logger.info("\n\nSimulating...")
            ttavg, tavg_data, status = sim.launch_simulation(report_every_n_monitor_steps=100)

            sim_path = os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + "_sim_settings.h5")
            writer.write_simulation_settings(sim.simulation_settings, sim_path)
            if test_write_read:
                # TODO: find out why it cannot set monitor expressions
                logger.info("Written and read simulation settings are identical?: " +
                            str(assert_equal_objects(sim.simulation_settings,
                                                     reader.read_simulation_settings(sim_path), logger=logger)))
            if not status:
                logger.warning("\nSimulation failed!")
            else:
                time = np.array(ttavg, dtype='float32')
                output_sampling_time = np.mean(np.diff(time))
                tavg_data = tavg_data[:, :, :, 0]
                logger.info("\n\nSimulated signal return shape: %s", tavg_data.shape)
                logger.info("Time: %s - %s", time[0], time[-1])
                logger.info("Values: %s - %s", tavg_data.min(), tavg_data.max())
                # Variables of interest in a dictionary:
                res_ts = prepare_vois_ts_dict(sim_settings.monitor_expressions, tavg_data)
                res_ts['time'] = time
                res_ts['time_units'] = 'msec'
                res_ts = compute_seeg_and_write_ts_h5_file(config.out.FOLDER_RES, lsa_hypothesis.name + "_ts.h5",
                                                                 sim.model, res_ts, output_sampling_time,
                                                                 sim_settings.simulated_period,
                                                                 hpf_flag=True, hpf_low=10.0, hpf_high=512.0,
                                                                 sensors_list=head.sensorsSEEG)
                # Plot results
                if model._ui_name is "EpileptorDP2D":
                    spectral_raster_plot = False
                    trajectories_plot = True
                else:
                    spectral_raster_plot = "lfp"
                    trajectories_plot = False
                #TODO: plotting fails when spectral_raster_plot="lfp". Denis will fix this
                plotter.plot_sim_results(sim.model, lsa_hypothesis.lsa_propagation_indices, res_ts,
                                         head.sensorsSEEG, hpf_flag=True, trajectories_plot=trajectories_plot,
                                         spectral_raster_plot=False, log_scale=True)
Exemple #15
0
def main_cc_vep(config,
                head_folder,
                ep_name="clinical_hypothesis",
                x0_indices=[],
                pse_flag=False,
                sim_flag=True):
    if not (os.path.isdir(config.out.FOLDER_RES)):
        os.mkdir(config.out.FOLDER_RES)
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)

    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    logger.info("Reading from: %s", head_folder)
    head = reader.read_head(head_folder)
    plotter = Plotter(config)
    plotter.plot_head(head)

    # --------------------------Hypothesis definition-----------------------------------
    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions)
    all_regions_indices = np.array(range(head.number_of_regions))

    # This is an example of Epileptogenicity Hypothesis:
    hyp_E = hypo_builder.build_hypothesis_from_file(ep_name, x0_indices)
    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(ep_name)

    disease_indices = hyp_E.e_indices + hyp_x0.x0_indices
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()

    if len(x0_indices) > 0:
        # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
        disease_values = reader.read_epileptogenicity(head_folder,
                                                      name=ep_name)
        disease_values = disease_values.tolist()
        x0_values = []
        for ix0 in x0_indices:
            ind = disease_indices.index(ix0)
            del disease_indices[ind]
            x0_values.append(disease_values.pop(ind))
        e_indices = disease_indices
        e_values = np.array(disease_values)
        x0_values = np.array(x0_values)
        hyp_x0_E = hypo_builder.set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()
        hypotheses = (hyp_E, hyp_x0, hyp_x0_E)

    else:
        hypotheses = (
            hyp_E,
            hyp_x0,
        )

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("Running hypothesis: %s", hyp.name)
        logger.info("Creating model configuration...")
        builder = ModelConfigurationBuilder(hyp.number_of_regions)
        writer.write_model_configuration_builder(
            builder,
            os.path.join(config.out.FOLDER_RES, "model_config_service.h5"))
        if hyp.type == "Epileptogenicity":
            model_configuration = builder.build_model_from_E_hypothesis(
                hyp, head.connectivity.normalized_weights)
        else:
            model_configuration = builder.build_model_from_hypothesis(
                hyp, head.connectivity.normalized_weights)
        writer.write_model_configuration(
            model_configuration,
            os.path.join(config.out.FOLDER_RES, "ModelConfiguration.h5"))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 region_labels=head.connectivity.region_labels,
                                 special_idx=disease_indices,
                                 model="2d",
                                 zmode="lin",
                                 figure_name=hyp.name + "_StateSpace")
        logger.info("Running LSA...")
        lsa_service = LSAService(eigen_vectors_number=None,
                                 weighted_eigenvector_sum=True)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)
        writer.write_hypothesis(
            lsa_hypothesis,
            os.path.join(config.out.FOLDER_RES, lsa_hypothesis.name + ".h5"))
        writer.write_lsa_service(
            lsa_service,
            os.path.join(config.out.FOLDER_RES, "lsa_config_service.h5"))
        plotter.plot_lsa(lsa_hypothesis, model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels, None)
        if pse_flag:
            n_samples = 100
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("Running PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(
                lsa_hypothesis,
                head.connectivity.normalized_weights,
                head.connectivity.region_labels,
                n_samples,
                param_range=0.1,
                global_coupling=[{
                    "indices": all_regions_indices
                }],
                healthy_regions_parameters=[{
                    "name": "x0_values",
                    "indices": healthy_indices
                }],
                model_configuration_builder=builder,
                lsa_service=lsa_service,
                save_flag=True,
                folder_res=config.out.FOLDER_RES,
                filename="PSE_LSA",
                logger=logger)[0]
            plotter.plot_lsa(lsa_hypothesis,
                             model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels,
                             pse_results,
                             title="Hypothesis PSE LSA Overview")
        if sim_flag:
            config.out.subfolder = "simulations"
            for folder in (config.out.FOLDER_RES, config.out.FOLDER_FIGURES):
                if not (os.path.isdir(folder)):
                    os.mkdir(folder)
            dynamical_models = ["EpileptorDP2D", "EpileptorDPrealistic"]

            for dynamical_model, sim_type in zip(dynamical_models,
                                                 ["fitting", "realistic"]):
                ts_file = None  # os.path.join(sim_folder_res, dynamical_model + "_ts.h5")
                vois_ts_dict = \
                    from_model_configuration_to_simulation(model_configuration, head, lsa_hypothesis,
                                                           sim_type=sim_type, dynamical_model=dynamical_model,
                                                           ts_file=ts_file, plot_flag=True, config=config)
Exemple #16
0
def set_model_config_LSA(head,
                         hyp,
                         reader,
                         config,
                         K_unscaled=K_DEF,
                         tau1=TAU1_DEF,
                         tau0=TAU0_DEF,
                         pse_flag=True,
                         plotter=None,
                         writer=None):
    model_configuration_builder = None
    lsa_service = None
    # --------------------------Model configuration and LSA-----------------------------------
    model_config_file = os.path.join(config.out.FOLDER_RES,
                                     hyp.name + "_ModelConfig.h5")
    hyp_file = os.path.join(config.out.FOLDER_RES, hyp.name + "_LSA.h5")
    if os.path.isfile(hyp_file) and os.path.isfile(model_config_file):
        # Read existing model configuration and LSA hypotheses...
        model_configuration = reader.read_model_configuration(
            model_config_file)
        lsa_hypothesis = reader.read_hypothesis(hyp_file)
    else:
        # ...or generate new ones
        model_configuration, lsa_hypothesis, model_configuration_builder, lsa_service = \
            from_hypothesis_to_model_config_lsa(hyp, head, eigen_vectors_number=None, weighted_eigenvector_sum=True,
                                                config=config, K=K_unscaled, tau1=tau1, tau0=tau0,
                                                save_flag=True, plot_flag=True)
        # --------------Parameter Search Exploration (PSE)-------------------------------
    if pse_flag:
        psa_lsa_file = os.path.join(config.out.FOLDER_RES,
                                    hyp.name + "_PSE_LSA_results.h5")
        try:
            pse_results = reader.read_dictionary(psa_lsa_file)
        except:
            logger.info("\n\nRunning PSE LSA...")
            n_samples = 100
            all_regions_indices = np.array(range(head.number_of_regions))
            disease_indices = lsa_hypothesis.regions_disease_indices
            healthy_indices = np.delete(all_regions_indices,
                                        disease_indices).tolist()
            if model_configuration_builder is None:
                model_configuration_builder = ModelConfigurationBuilder(
                    hyp.number_of_regions, K=K_unscaled)
            if lsa_service is None:
                lsa_service = LSAService(eigen_vectors_number=None,
                                         weighted_eigenvector_sum=True)
            pse_results = \
                pse_from_lsa_hypothesis(n_samples, lsa_hypothesis, head.connectivity.normalized_weights,
                                        model_configuration_builder, lsa_service, head.connectivity.region_labels,
                                        param_range=0.1, global_coupling=[{"indices": all_regions_indices}],
                                        healthy_regions_parameters=[ {"name": "x0_values", "indices": healthy_indices}],
                                        logger=logger, save_flag=False)[0]
            if plotter:
                plotter.plot_lsa(lsa_hypothesis, model_configuration,
                                 lsa_service.weighted_eigenvector_sum,
                                 lsa_service.eigen_vectors_number,
                                 head.connectivity.region_labels, pse_results)
            if writer:
                writer.write_dictionary(pse_results, psa_lsa_file)
    else:
        pse_results = {}
    return model_configuration, lsa_hypothesis, pse_results