Exemple #1
0
def _range(annotation, args):
    """Handling TVM loop types"""
    n = args.__len__()
    if n == 1:
        low, ext = const(0, dtype="int32"), args[0]
    else:
        _internal_assert(n == 2, "A loop intrinsic should only have 1 or 2 arguments!")
        low, ext = args[0], args[1]
    if not tvm.tir.analysis.expr_deep_equal(low, const(0, dtype="int32")):
        ext = ext - low
    for_type = LOOP_INTRIN[annotation]
    iter_var = None
    return iter_var, low, ext, for_type
Exemple #2
0
    def allocate(self, dtype, shape, name="buf", scope=None):
        """Create a allocate statement.

        Parameters
        ----------
        dtype : str
            The content data type.

        shape : tuple of Expr
            The shape of array to be allocated.

        name : str, optional
            The name of the buffer.

        scope : str, optional
            The scope of the buffer.

        Returns
        -------
        buffer : BufferVar
            The buffer var representing the buffer.
        """
        buffer_var = _expr.Var(name, dtype="handle")
        if not isinstance(shape, (list, tuple, _container.Array)):
            shape = [shape]
        if scope:
            self.scope_attr(buffer_var, "storage_scope", scope)
        self.emit(lambda x: _stmt.Allocate(buffer_var, dtype, shape,
                                           const(1, dtype="uint1"), x))
        return BufferVar(self, buffer_var, dtype)
Exemple #3
0
 def __getitem__(self, index):
     t = DataType(self._content_type)
     index = self._linear_index(index)
     if t.lanes > 1:
         base = index * t.lanes
         index = _expr.Ramp(base, const(1, base.dtype), t.lanes)
     return _expr.Load(self._content_type, self._buffer_var, index)
Exemple #4
0
 def __getitem__(self, index):
     t = DataType(self._content_type)
     index = self._linear_index(index)
     if t.lanes > 1:
         base = index * t.lanes
         stride = 1 if (not hasattr(base, "dtype")) else const(1, base.dtype)
         index = _expr.Ramp(base, stride, t.lanes)
     return _expr.Load(self._content_type, self._buffer_var, index)
Exemple #5
0
def bind(func_id, args):
    """Handling TVM thread binding"""
    _internal_assert(func_id == "bind", "This function cannot be directly invoked!")
    _internal_assert(args.__len__() == 2, "A loop bind should only have 2 arguments!")
    _internal_assert(isinstance(args[0], str), "A loop bind's first argument should be a string!")
    low, ext = const(0, "int32"), args[1]
    iter_var = tvm.te.thread_axis((low, ext), args[0])
    for_type = None
    return iter_var, low, ext, for_type
Exemple #6
0
 def __setitem__(self, index, value):
     value = convert(value)
     if value.dtype != self._content_type:
         raise ValueError("data type does not match content type %s vs %s" %
                          (value.dtype, self._content_type))
     t = DataType(self._content_type)
     if t.lanes > 1:
         base = index * t.lanes
         index = _expr.Ramp(base, const(1, base.dtype), t.lanes)
     self._builder.emit(_stmt.Store(self._buffer_var, value, index))
Exemple #7
0
Fichier : op.py Projet : szha/tvm
def _pack_buffer(buf):
    """Build intrinsics that packs the buffer.
    """
    shape = Call("handle", "tir.tvm_stack_make_shape", buf.shape)
    strides = Call("handle", "tir.tvm_stack_make_shape",
                   buf.strides) if buf.strides else 0
    pack_args = [
        buf.data, shape, strides,
        len(buf.shape),
        const(0, dtype=buf.dtype), buf.elem_offset
    ]
    return Call("handle", Op.get("tir.tvm_stack_make_array"), pack_args)
Exemple #8
0
 def __setitem__(self, index, value):
     value = convert(value)
     if value.dtype != self._content_type:
         raise ValueError("data type does not match content type %s vs %s" %
                          (value.dtype, self._content_type))
     index = self._linear_index(index)
     t = DataType(self._content_type)
     if t.lanes > 1:
         base = index * t.lanes
         stride = 1 if (not hasattr(base, "dtype")) else const(
             1, base.dtype)
         index = _expr.Ramp(base, stride, t.lanes)
     self._builder.emit(_stmt.Store(self._buffer_var, value, index))
Exemple #9
0
def _pack_buffer(buf):
    """Build intrinsics that packs the buffer.
    """
    assert buf.shape
    shape = Call("handle", "tvm_stack_make_shape", buf.shape, Call.Intrinsic)
    strides = Call("handle", "tvm_stack_make_shape", buf.strides,
                   Call.Intrinsic) if buf.strides else 0
    pack_args = [
        buf.data, shape, strides,
        len(buf.shape),
        const(0, dtype=buf.dtype), buf.elem_offset
    ]
    return Call("handle", "tvm_stack_make_array", pack_args, Call.Intrinsic)
Exemple #10
0
    def allocate(self,
                 dtype,
                 shape,
                 name="buf",
                 axis_separators=None,
                 scope=""):
        """Create a allocate statement.

        Parameters
        ----------
        dtype : str
            The content data type.

        shape : tuple of Expr
            The shape of array to be allocated.

        name : str, optional
            The name of the buffer.

        axis_separators : list of int, optional

            If passed, a list of separators between groups of axes,
            each of which is flattened to an output axis.  For flat
            memory spaces, should either be None, or an empty list.

        scope : str, optional
            The scope of the buffer.


        Returns
        -------
        buffer : BufferVar
            The buffer var representing the buffer.

        """
        if not isinstance(shape, (list, tuple, _container.Array)):
            shape = [shape]

        buffer = _buffer.decl_buffer(shape,
                                     dtype,
                                     name,
                                     scope=scope,
                                     axis_separators=axis_separators)

        buffer_var = buffer.data
        self.emit(lambda x: _stmt.Allocate(buffer_var, dtype, shape,
                                           const(1, dtype="uint1"), x))
        return BufferVar(self, buffer, dtype)
Exemple #11
0
 def __init__(
     self,
     iter_values: List[PrimExpr],
     predicate: Union[PrimExpr, bool],
     block: Block,
     span: Optional[Span] = None,
 ):
     if isinstance(predicate, bool):
         predicate = const(predicate, "bool")
     self.__init_handle_by_constructor__(
         _ffi_api.BlockRealize,
         iter_values,
         predicate,
         block,
         span,
     )
Exemple #12
0
 def __neg__(self):
     neg_one = const(-1, self.dtype)
     return self.__mul__(neg_one)
Exemple #13
0
              Returns
              -------
              value : PrimExpr
                  The result value.

              Example
              -------
              .. code-block:: python

                m = te.var("m")
                n = te.var("n")
                A = te.placeholder((m, n), name="A")
                k = te.reduce_axis((0, n), name="k")

                # there are two way to use this {0} reducer:
                # mode 1, accept (expr, axis, where) to produce an Reduce Expr
                # tvm.{0} represents tvm.te.{0} or tvm.tir.{0}.
                B = te.compute((m,), lambda i: tvm.{0}(A[i, k], axis=k), name="B")

                # mode 2, simply use it with multiple Exprs:
                {0}_res = tvm.{0}(m, n)
              """
    reducer.__doc__ = doc_str.format(name)
    return reducer


# pylint: disable=unnecessary-lambda
sum = comm_reducer(lambda x, y: x + y, lambda t: const(0, dtype=t), name="sum")
min = comm_reducer(lambda x, y: _ffi_api._OpMin(x, y), max_value, name="min")
max = comm_reducer(lambda x, y: _ffi_api._OpMax(x, y), min_value, name="max")
Exemple #14
0
 def __neg__(self):
     neg_one = const(-1, self.dtype)  # type: ignore
     return self.__mul__(neg_one)