def plot_Earth_Mayavi( earthTexture='MAPLEAF/IO/blue_marble_spherical_splitFlipped.jpg'): from mayavi import mlab from tvtk.api import tvtk # python wrappers for the C++ vtk ecosystem # create a figure window (and scene) fig = mlab.figure(size=(600, 600)) # load and map the texture img = tvtk.JPEGReader() img.file_name = getAbsoluteFilePath(earthTexture) texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # (interpolate for a less raster appearance when zoomed in) # use a TexturedSphereSource, a.k.a. getting our hands dirty R = 6371007.1809 Nrad = 180 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=R, theta_resolution=Nrad, phi_resolution=Nrad) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) fig.scene.add_actor(sphere_actor)
def draw(self, figure): from tvtk.api import tvtk import tempfile import urllib.request from pathlib import Path local_filename = Path("/hermes_temp/blue_marble.jpg") if not local_filename.is_file(): local_filename.parent.mkdir(parents=True, exist_ok=True) print("Downloading Earth") from tqdm import tqdm dbar = tqdm(leave=False) def download_bar(count, block_size, total_size): dbar.total = total_size dbar.update(block_size) local_filename, headers = urllib.request.urlretrieve( "https://eoimages.gsfc.nasa.gov/images/imagerecords/73000/73909/world.topo.bathy.200412.3x5400x2700.jpg", "/hermes_temp/blue_marble.jpg", reporthook=download_bar) else: local_filename = str(local_filename) img = tvtk.JPEGReader() img.file_name = local_filename texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # use a TexturedSphereSource, a.k.a. getting our hands dirty Nrad = 180 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=self.poli_body.R_mean.to( visualisation.SCALE_UNIT).value, theta_resolution=Nrad, phi_resolution=Nrad) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper( input_connection=sphere.output_port) self.sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) figure.scene.add_actor(self.sphere_actor)
def draw(self, figure): from tvtk.api import tvtk img = tvtk.JPEGReader() img.file_name = "D:/git/thesis/mmWaveISL/mmWaveISL/blue_marble.jpg" texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # use a TexturedSphereSource, a.k.a. getting our hands dirty Nrad = 180 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=self.R_mean.to(u.km).value, theta_resolution=Nrad, phi_resolution=Nrad) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) self.sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) figure.scene.add_actor(self.sphere_actor)
def __source_dict_default(self): """Default value for source dict.""" sd = { 'arrow': tvtk.ArrowSource(), 'cone': tvtk.ConeSource(), 'cube': tvtk.CubeSource(), 'cylinder': tvtk.CylinderSource(), 'disk': tvtk.DiskSource(), 'earth': tvtk.EarthSource(), 'line': tvtk.LineSource(), 'outline': tvtk.OutlineSource(), 'plane': tvtk.PlaneSource(), 'point': tvtk.PointSource(), 'polygon': tvtk.RegularPolygonSource(), 'sphere': tvtk.SphereSource(), 'superquadric': tvtk.SuperquadricSource(), 'textured sphere': tvtk.TexturedSphereSource(), 'glyph2d': tvtk.GlyphSource2D() } return sd
def auto_sphere(image_file): # create a figure window (and scene) fig = mlab.figure(size=(600, 600)) # load and map the texture img = tvtk.PNGReader() img.file_name = image_file texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # (interpolate for a less raster appearance when zoomed in) # use a TexturedSphereSource, a.k.a. getting our hands dirty R = 1 Nrad = 180 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=R, theta_resolution=Nrad, phi_resolution=Nrad) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) fig.scene.add_actor(sphere_actor)
def createSphere(fig, image_file): # load and map the texture img = tvtk.JPEGReader() img.file_name = image_file texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # (interpolate for a less raster appearance when zoomed in) # use a TexturedSphereSource, a.k.a. getting our hands dirty R = 6371 * 1000 Nrad = 360 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=R, theta_resolution=Nrad, phi_resolution=Nrad) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) fig.scene.add_actor(sphere_actor) sphere_actor.rotate_z(180) return fig, sphere_actor
def maven_orbit_image(time, camera_pos=[1, 0, 0], camera_up=[0, 0, 1], extent=3, parallel_projection=True, view_from_orbit_normal=False, view_from_periapsis=False, show_maven=False, show_orbit=True, label_poles=None, show=True, transparent_background=False, background_color=(0, 0, 0)): """Creates an image of Mars and the MAVEN orbit at a specified time. Parameters ---------- time : str Time to diplay, in a string format interpretable by spiceypy.str2et. camera_pos : length 3 iterable Position of camera in MSO coordinates. camera_up : length 3 iterable Vector defining the image vertical. extent : float Half-width of image in Mars radii. parallel_projection : bool Whether to display an isomorphic image from the camera position. If False, goofy things happen. Defaults to True. view_from_orbit_normal : bool Override camera_pos with a camera position along MAVEN's orbit normal. Defaults to False. view_from_periapsis : bool Override camera_pos with a camera position directly above MAVEN's periapsis. Defaults to False. show_maven : bool Whether to draw a circle showing the position of MAVEN at the specified time. Defaults to False. show_orbit : bool Whether to draw the MAVEN orbit. Defaults to True. label_poles : bool Whether to draw an 'N' and 'S' above the visible poles of Mars. show : bool Whether to show the image when called, or supress display. Defaults to True. transparent_background : bool If True, the image background is transparent, otherwise it is set to background_color. Defaults to False. background_color : RGB1 tuple Background color to use if transparent_background=False. Specified as an RGB tuple with values between 0 and 1. Returns ------- rgb_array : 1000x1000x3 numpy array of image RGB values Image RGB values. return_coords : dict Description of the image coordinate system useful for plotting on top of output image. Notes ----- Call maven_iuvs.load_iuvs_spice() before calling this function to ensure kernels are loaded. """ myet = spice.str2et(time) # disable mlab display (this is done by matplotlib later) mlab.options.offscreen = True # create a figure window (and scene) mlab_pix = 1000 mfig = mlab.figure(size=(mlab_pix, mlab_pix), bgcolor=background_color) # disable rendering as objects are added mfig.scene.disable_render = True # # Set up the planet surface # # load and map the Mars surface texture image_file = os.path.join(anc_dir, 'marssurface_2.jpg') img = tvtk.JPEGReader() img.file_name = image_file texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # attach the texture to a sphere mars_radius = 3395. sphere_radius = 1 # radius of planet is 1 rM sphere_resolution = 180 # 180 points on the sphere sphere = tvtk.TexturedSphereSource(radius=sphere_radius, theta_resolution=sphere_resolution, phi_resolution=sphere_resolution) sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) mars = tvtk.Actor(mapper=sphere_mapper, texture=texture) # adjust the reflection properties for a pretty image mars.property.ambient = 0.2 # so the nightside is slightly visible mars.property.specular = 0.15 # make it shinier near dayside # now apply the rotation matrix to the planet # tvtk only thinks about rotations with Euler angles, so we need # to use a SPICE routine to get these from the rotation matrix # to get from the surface to MSO coordinates we'd normally do # this: rmat = spice.pxform('IAU_MARS', 'MAVEN_MSO', myet) # but we need to use transpose because spice.m2eul assumes the matrix # defines a coordinate system rotation, the inverse of the matrix # to rotate vectors trmat = spice.pxform('MAVEN_MSO', 'IAU_MARS', myet) # now we can get the Euler angles rangles = np.rad2deg(spice.m2eul(trmat, 2, 1, 3)) # ^^^^^^^^ # 2,1,3 because vtk performs # rotations in the order # z,x,y and SPICE wants these # in REVERSE order mars.orientation = rangles[[1, 0, 2]] # ^^^^^^^ # orientation must be specified as x,y,z # rotations in that order even though they # are applied in the order above # OK, that was hard, but now we're good! mfig.scene.add_actor(mars) # # make a lat/lon grid # line_x = [] line_y = [] line_z = [] line_o = [] line_t = np.linspace(0, 2*np.pi, 100) line_r = 1.0 longrid = np.arange(0, 360, 30) for lon in longrid: line_x.append(line_r*np.cos(np.deg2rad(lon))*np.cos(line_t)) line_x.append([0]) line_y.append(line_r*np.sin(np.deg2rad(lon))*np.cos(line_t)) line_y.append([0]) line_z.append(line_r*np.sin(line_t)) line_z.append([0]) line_o.append(np.ones_like(line_t)) line_o.append([0]) latgrid = np.arange(-90, 90, 30)[1:] for lat in latgrid: line_x.append(line_r*np.cos(np.deg2rad(lat))*np.cos(line_t)) line_x.append([0]) line_y.append(line_r*np.cos(np.deg2rad(lat))*np.sin(line_t)) line_y.append([0]) line_z.append(line_r*np.sin(np.deg2rad(lat))*np.ones_like(line_t)) line_z.append([0]) line_o.append(np.ones_like(line_t)) line_o.append([0]) line_x = np.concatenate(line_x) line_y = np.concatenate(line_y) line_z = np.concatenate(line_z) line_o = np.concatenate(line_o) linearray = [np.matmul(rmat, [x, y, z]) for x, y, z in zip(line_x, line_y, line_z)] (line_x, line_y, line_z) = np.transpose(np.array(linearray)) grid_linewidth = 0.25*mlab_pix/1000 mlab.plot3d(line_x, line_y, line_z, line_o, transparent=True, color=(0, 0, 0), tube_radius=None, line_width=grid_linewidth) # # compute the spacecraft orbit # # for the given time, we determine the orbit period maven_state = spice.spkezr('MAVEN', myet, 'MAVEN_MME_2000', 'NONE', 'MARS')[0] marsmu = spice.bodvrd('MARS', 'GM', 1)[1][0] maven_elements = spice.oscltx(maven_state, myet, marsmu) orbit_period = 1.001*maven_elements[-1] # make an etlist corresponding to the half-orbit ahead and behind orbit_subdivisions = 2000 etlist = (myet - orbit_period/2 + orbit_period*np.linspace(0, 1, num=orbit_subdivisions)) # get the position of the orbit in MSO statelist = spice.spkezr('MAVEN', etlist, 'MAVEN_MSO', 'NONE', 'MARS')[0] statelist = np.append(statelist, [statelist[0]], axis=0) # close the orbit poslist = np.transpose(statelist)[:3]/mars_radius # scale to Mars radius # plot the orbit orbitcolor = np.array([222, 45, 38])/255 # a nice red orbitcolor = tuple(orbitcolor) maven_x, maven_y, maven_z = poslist if show_orbit: mlab.plot3d(maven_x, maven_y, maven_z, color=orbitcolor, tube_radius=None, line_width=3*mlab_pix/1000) if not parallel_projection: # add a dot indicating the location of the Sun # this only makes sense with a perspective transform... with # orthographic coordinates we're always too far away # TODO: non parallel projection results in goofy images sun_distance = 10 sun_sphere = tvtk.SphereSource(center=(sun_distance, 0, 0), radius=1*np.pi/180*sun_distance, theta_resolution=sphere_resolution, phi_resolution=sphere_resolution) sun_sphere_mapper = tvtk.PolyDataMapper(input_connection=sun_sphere.output_port) sun_sphere = tvtk.Actor(mapper=sun_sphere_mapper) sun_sphere.property.ambient = 1.0 sun_sphere.property.lighting = False # mfig.scene.add_actor(sun_sphere) # put a line along the x-axis towards the sun # sunline_x=np.arange(0, 5000, 1) # mlab.plot3d(sunline_x, 0*sunline_x, 0*sunline_x, # color=(1.0,1.0,1.0), # tube_radius=None,line_width=6) # # Define camera coordinates # if view_from_periapsis: # to do this we need to get the position of apoapsis and the # orbit normal rlist = [np.linalg.norm(p) for p in np.transpose(poslist)] apoidx = np.argmax(rlist) apostate = spice.spkezr('MAVEN', etlist[apoidx], 'MAVEN_MSO', 'NONE', 'MARS')[0] camera_pos = -1.0 * apostate[:3] camera_pos = 5 * (camera_pos/np.linalg.norm(camera_pos)) camera_up = np.cross(apostate[:3], apostate[-3:]) camera_up = camera_up/np.linalg.norm(camera_up) parallel_projection = True if view_from_orbit_normal: # to do this we need to get the position of apoapsis and the # orbit normal rlist = [np.linalg.norm(p) for p in np.transpose(poslist)] apoidx = np.argmax(rlist) apostate = spice.spkezr('MAVEN', etlist[apoidx], 'MAVEN_MSO', 'NONE', 'MARS')[0] camera_up = apostate[:3] camera_up = camera_up/np.linalg.norm(camera_up) camera_pos = np.cross(apostate[:3], apostate[-3:]) camera_pos = 5 * (camera_pos/np.linalg.norm(camera_pos)) parallel_projection = True # construct an orthonormal coordinate system camera_pos = np.array(camera_pos) camera_pos_norm = camera_pos/np.linalg.norm(camera_pos) camera_up = (camera_up - camera_pos_norm*np.dot(camera_pos_norm, camera_up)) camera_up = camera_up/np.linalg.norm(camera_up) camera_right = np.cross(-camera_pos_norm, camera_up) # set location of camera and orthogonal projection camera = mlab.gcf().scene.camera if parallel_projection: camera_pos = 5*camera_pos_norm camera.parallel_projection = True camera.parallel_scale = extent # half box size else: # TODO: this results in goofy images, fix this camera.parallel_projection = False camera.view_angle = 50 camera.position = np.array(camera_pos) camera.focal_point = (0, 0, 0) camera.view_up = camera_up camera.clipping_range = (0.01, 5000) # # Set up lighting # # The only light is the Sun, which is fixed on the MSO +x axis. # VTK's default lights are uniform and don't fall off with # distance, which is what we want mfig.scene.light_manager.light_mode = "vtk" sun = mfig.scene.light_manager.lights[0] sun.activate = True sun_vec = (1, 0, 0) # The only way to set a light in mayavi/vtk is with respect to the # camera position. This means we have to get elevation/azimuth # coordinates for the Sun with respect to the camera, which could # be anywhere. # Here's how the coordinate system is defined: # elevation: # [-90 -- +90] # +90 places the light along the direction of camera_up # azimuth: # [-180 -- +180], # +90 is in the plane of camera_up and camera_right. # +/-180 is behind, pointing at the camera # -90 places light to the left # so, to get elevation we need to put the sun in scene coordinates sun_scene = np.matmul([camera_right, camera_up, camera_pos_norm], sun_vec) # elevation is the angle is latitude measured wrt the y-axis of # the scene sun_elevation = np.rad2deg(np.arcsin(np.dot(sun_scene, [0, 1, 0]))) # azimuth is the angle in the x-z plane, clockwise from the z-axis sun_azimuth = np.rad2deg(np.arctan2(sun_scene[0], sun_scene[2])) # now we can set the location of the light, computed to always lie # along MSO+x sun.azimuth = sun_azimuth sun.elevation = sun_elevation # set the brightness of the Sun based on the ambient lighting of # Mars so there is no washing out sun.intensity = 1.0 - mars.property.ambient # # Render the 3D scene # mfig.scene.disable_render = False # mfig.scene.anti_aliasing_frames = 0 # can uncomment to make # # rendering faster and uglier mlab.show() mode = 'rgba' if transparent_background else 'rgb' img = mlab.screenshot(mode=mode, antialiased=True) mlab.close(all=True) # 3D stuff ends here # # Draw text and labels in matplotlib # fig, ax = plt.subplots(1, 1, dpi=400*mlab_pix/1000, figsize=(2.5, 2.5)) ax.imshow(img) # put an arrow along the orbit direction if show_orbit: arrow_width = 5 arrow_length = 1.5*arrow_width # by default, draw the arrow at the closest point on the orbit # to the viewer arrowidx = np.argmax([np.dot(camera_pos_norm, p) for p in np.transpose(poslist)]) if view_from_periapsis: # draw the arrow 45 degrees after periapsis arrowidx = np.argmax( [np.dot( (camera_right + camera_pos_norm)/np.sqrt(2), p) for p in np.transpose(poslist)]) if view_from_orbit_normal: # draw the arrow 45 degrees after periapsis arrowidx = np.argmax( [np.dot( (camera_right-camera_up)/np.sqrt(2.), p) for p in np.transpose(poslist)]) arrowetlist = etlist[arrowidx] + 5*60*np.array([0, 1]) arrowstatelist = spice.spkezr('MAVEN', arrowetlist, 'MAVEN_MSO', 'NONE', 'MARS')[0] arrowdir = arrowstatelist[1][:3] - arrowstatelist[0][:3] arrowdirproj = [np.dot(camera_right, arrowdir), np.dot(camera_up, arrowdir)] arrowdirproj = arrowdirproj/np.linalg.norm(arrowdirproj) arrowloc = np.transpose(poslist)[arrowidx] arrowlocproj = np.array([np.dot(camera_right, arrowloc), np.dot(camera_up, arrowloc)]) arrowlocdisp = (arrowlocproj + extent)/extent/2 arrow = ax.annotate('', xytext=(arrowlocdisp - 0.05*arrowdirproj), xy=(arrowlocdisp + 0.05*arrowdirproj), xycoords='axes fraction', textcoords='axes fraction', arrowprops=dict(facecolor=orbitcolor, edgecolor='none', width=0, headwidth=arrow_width, headlength=arrow_length)) # label the poles if view_from_periapsis: label_poles = True if view_from_orbit_normal: label_poles = True if label_poles is None: label_poles = False if label_poles: # label the north and south pole if they are visible def label_pole(loc, lbl): polepos = np.matmul(rmat, loc) poleposproj = np.array([np.dot(camera_right, polepos), np.dot(camera_up, polepos)]) poleposdisp = (poleposproj+extent)/extent/2 # determine if the north pole is visible polevis = (not (np.linalg.norm([poleposproj]) < 1 and np.dot(camera_pos, polepos) < 0)) if polevis: polelabel = ax.text(*poleposdisp, lbl, transform=ax.transAxes, color='#888888', ha='center', va='center', size=4, zorder=1) # outline the letter polelabel.set_path_effects([ path_effects.withStroke(linewidth=0.75, foreground='k')]) label_pole([0, 0, 1], 'N') label_pole([0, 0, -1], 'S') if show_orbit: # add a mark for periapsis and apoapsis rlist = [np.linalg.norm(p) for p in np.transpose(poslist)] # find periapsis/apoapsis def label_apsis(apsis_fn, label, **kwargs): apsisidx = apsis_fn(rlist) apsispos = np.transpose(poslist)[apsisidx] apsisposproj = np.array([np.dot(camera_right, apsispos), np.dot(camera_up, apsispos)]) apsisposdisp = (apsisposproj + extent)/extent/2 apsisvis = (not (np.linalg.norm([apsisposproj]) < 1 and np.dot(camera_pos, apsispos) < 0)) if apsisvis: apsis = mpatches.CirclePolygon(apsisposdisp, 0.015, resolution=4, transform=ax.transAxes, fc=orbitcolor, lw=0, zorder=10) ax.add_patch(apsis) ax.text(*apsisposdisp, label, transform=ax.transAxes, color='k', ha='center', size=4, zorder=10, **kwargs) label_apsis(np.argmin, 'P', va='center_baseline') label_apsis(np.argmax, 'A', va='center') if show_maven: # add a dot for the spacecraft location mavenpos = spice.spkezr('MAVEN', myet, 'MAVEN_MSO', 'NONE', 'MARS')[0][:3]/mars_radius mavenposproj = np.array([np.dot(camera_right, mavenpos), np.dot(camera_up, mavenpos)]) mavenposdisp = (mavenposproj + extent)/extent/2 mavenvis = (not (np.linalg.norm([mavenposproj]) < 1 and np.dot(camera_pos, mavenpos) < 0)) if mavenvis: maven = mpatches.Circle(mavenposdisp, 0.012, transform=ax.transAxes, fc=orbitcolor, lw=0, zorder=11) ax.add_patch(maven) ax.text(*mavenposdisp, 'M', transform=ax.transAxes, color='k', ha='center', va='center_baseline', size=4, zorder=11) # suppress all whitespace around the plot plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) ax.set_axis_off() ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) fig.canvas.draw() rgb_array = fig2rgb_array(fig) if not show: plt.close(fig) return_coords = {'extent': extent, 'scale': '3395 km', 'camera_pos': camera_pos, 'camera_pos_norm': camera_pos_norm, 'camera_up': camera_up, 'camera_right': camera_right, 'orbit_coords': poslist} return rgb_array, return_coords