def ranking_today2():
    df = get_speadsheet_data()
    rank = 0
    ranking = "昨日の新型コロナウイルス感染者数ランキング\n"
    is_same = False
    current_num = -1
    yesterday = str((datetime.today() - timedelta(days=1)).date())

    for city, num in df.loc[yesterday].sort_values(
            ascending=False).to_dict().items():
        if current_num == num:
            is_same = True
        else:
            ranking += "\n"
            rank += 1
            is_same = False
        if not is_same:
            if count_twitter(ranking) >= 230:
                ranking += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{yesterday}.html)"
                break
            else:
                ranking += f"{rank}位 {num}人 {city}"
                current_num = num
        else:
            if count_twitter(ranking) >= 230:
                ranking += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{yesterday}.html)"
                break
            else:
                ranking += f", {city}"
    post(ranking)

    return ranking
Exemple #2
0
def post_nagoya():
    if os.path.isfile("nagoya_lock.zip"):
        pass
    else:
        load_url = 'https://www.city.nagoya.jp/kenkofukushi/page/0000126920.html'
        html = requests.get(load_url)
        soup = BeautifulSoup(html.content, "html.parser")
        nagoya_h3 = soup.find("h3")
        date = datetime.strptime(
            nagoya_h3.text.split("令和3年")[1].split("現在")[0], '%m月%d日')
        # date = datetime.strptime(nagoya_h3.text.split("令和2年")
        #                          [1].split("現在")[0], '%m月%d日')
        today = datetime.today()
        if (today.month == date.month) & (today.day == date.day):
            is_today = True
        else:
            is_today = False
        article_text = nagoya_h3.next_element.next_element.find("p").text
        article_url = load_url
        num_today = int(re.sub("\\D", "", article_text))
        # is_today = True
        if is_today:
            df0 = pandas.read_pickle("database.zip")
            num_last_week = get_number_by_delta(df0, -7, region="名古屋市")
            youbi = get_day_of_week_jp(today)
            header = f'[速報]名古屋市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
            post(header)
            data_for_save = pandas.DataFrame([{
                '本日': num_today,
                '先週': num_last_week
            }],
                                             index=['名古屋市'])
            data_for_save.to_pickle("nagoya_lock.zip")
            time.sleep(5)
            print("名古屋市更新しました", datetime.today())
def post() -> None:
    from twitter_post import post
    medical = get_medical_number(get_medical_data())
    non_medical = get_non_medical_number(get_open_data())
    headline = generate_headline_first_second(medical, non_medical)

    last_number = get_last_total_number()
    current_numer = extract_total_number(headline)
    if current_numer > last_number:
        post(headline)
    else:
        print("The number is the same as the last number.")
Exemple #4
0
def post_toyohashi():
    if os.path.isfile("toyohashi_lock.zip"):
        pass
    else:
        load_url = 'https://www.city.toyohashi.lg.jp/41805.htm'

        html = requests.get(load_url)
        soup = BeautifulSoup(html.content, "html.parser")
        toyohashi_new = soup.find(class_='Item_normal')

        # toyohashi_header = "豊橋市が新型コロナウイルス情報を更新しました > "
        article_text = toyohashi_new.text.replace("\n", "").replace("\xa0", "")
        article_url = load_url

        today = datetime.today()
        nums = re.findall(r"\d+", article_text)
        nums = [
            _num.translate(
                str.maketrans(
                    {chr(0xFF01 + i): chr(0x21 + i)
                     for i in range(94)})) for _num in nums
        ]
        date = datetime.strptime(f"{nums[1]}月{nums[2]}日", "%m月%d日")
        if (today.month == date.month) & (today.day == date.day):
            is_today = True
        else:
            is_today = False
        # is_today = True
        if is_today:
            num_today = int(nums[3])
            df0 = pandas.read_pickle("database.zip")
            num_last_week = get_number_by_delta(df0, -7, region="豊橋市")
            youbi = get_day_of_week_jp(today)
            header = f'[速報]豊橋市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
            post(header)
            data_for_save = pandas.DataFrame([{
                '本日': num_today,
                '先週': num_last_week
            }],
                                             index=['豊橋市'])
            data_for_save.to_pickle("toyohashi_lock.zip")
            time.sleep(5)
            print("豊橋市更新しました", datetime.today())
Exemple #5
0
def post_zentai():
    is_toyohashi_done = os.path.isfile("toyohashi_lock.zip")
    is_toyota_done = os.path.isfile("toyota_lock.zip")
    is_okazaki_done = os.path.isfile("okazaki_lock.zip")
    is_nagoya_done = os.path.isfile("nagoya_lock.zip")
    is_aichi_done = os.path.isfile("aichi_lock.zip")
    is_ichinomiya_done = os.path.isfile("ichinomiya_lock.zip")

    is_dones = [
        is_aichi_done, is_nagoya_done, is_okazaki_done, is_toyohashi_done,
        is_toyota_done, is_ichinomiya_done
    ]
    if (all(is_dones)) and (not os.path.isfile("zentai.lock")):
        df_toyohashi = pandas.read_pickle("toyohashi_lock.zip")
        df_toyota = pandas.read_pickle("toyota_lock.zip")
        df_okazaki = pandas.read_pickle("okazaki_lock.zip")
        df_nagoya = pandas.read_pickle("nagoya_lock.zip")
        df_aichi = pandas.read_pickle("aichi_lock.zip")
        df_ichinomiya = pandas.read_pickle("ichinomiya_lock.zip")
        df_today = pandas.concat([
            df_toyohashi, df_aichi, df_nagoya, df_toyota, df_okazaki,
            df_ichinomiya
        ])
        num_today = df_today['本日'].sum()
        num_last_week = df_today['先週'].sum()
        youbi = get_day_of_week_jp(datetime.today() - timedelta(hours=6))

        article_url = 'https://www.pref.aichi.jp/site/covid19-aichi/'
        header = f'[速報]本日の愛知県全体の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
        # print(header)
        post(header)
        df_today.to_pickle(
            os.path.join(
                "data",
                f"{str(datetime.today()-timedelta(hours=6)).split()[0]}_from_sum.zip"
            ))
        with open("zentai.lock", "w", encoding="utf-8") as f:
            f.write("")
        time.sleep(5)
        print("愛知県全体更新しました", datetime.today())
Exemple #6
0
def post_aichi():
    if os.path.isfile("aichi_lock.zip"):
        pass
    else:
        d_atom = feedparser.parse(
            'https://www.pref.aichi.jp/rss/10/site-758.xml')

        is_today = False
        today = datetime.today() - timedelta(hours=6)
        for entry in d_atom['entries']:
            _day = datetime.strptime(entry['updated'],
                                     "%Y-%m-%dT%H:%M:%S+09:00")
            # print(_day.month, today.month, _day.day, today.day,
            #       entry['title'], '新型コロナウイルス感染症患者の発生について')
            if (_day.month == today.month) and (_day.day == today.day) and (
                    entry['title'] == '新型コロナウイルス感染症患者の発生について'):
                article_url = entry['id']
                is_today = True
                break
        if is_today:
            load_url = article_url
            # load_url = 'https://www.pref.aichi.jp/site/covid19-aichi/pressrelease-ncov201208.html'
            html = requests.get(load_url)
            soup = BeautifulSoup(html.content, "html.parser")
            article_text = soup.find(class_="mol_textblock").text
            nums = re.findall(r"\d+", article_text)
            num_today = int(nums[0])
            df0 = pandas.read_pickle("database.zip")
            num_last_week = get_number_by_delta(df0, -7, region="愛知県")
            youbi = get_day_of_week_jp(today)
            header = f'[速報]愛知県管轄自治体(名古屋市・豊橋市・豊田市・岡崎市・一宮市を除く愛知県)の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
            post(header)
            data_for_save = pandas.DataFrame([{
                '本日': num_today,
                '先週': num_last_week
            }],
                                             index=['愛知県'])
            data_for_save.to_pickle("aichi_lock.zip")
            time.sleep(5)
            print("愛知県更新しました", datetime.today())
def ranking_week2():
    data = get_speadsheet_data()
    rank = 0
    ranking = "昨日まで直近1週間の新型コロナウイルス感染者数ランキング\n"
    is_same = False
    current_num = -1
    yesterday = str((datetime.today() - timedelta(days=1)).date())

    df = pandas.DataFrame([])
    indices = data.index.sort_values(ascending=False)
    for num in range(len(indices) - 6):
        df1 = data.loc[indices[num:num + 7], :].sum().to_frame().transpose()
        df1.index = [indices[num]]
        df = pandas.concat([df, df1])

    for city, num in df.loc[yesterday].loc[yesterday].sort_values(
            ascending=False).to_dict().items():
        if current_num == num:
            is_same = True
        else:
            ranking += "\n"
            rank += 1
            is_same = False
        if not is_same:
            if count_twitter(ranking) >= 230:
                ranking += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{yesterday}_week.html)"
                break
            else:
                ranking += f"{rank}位 {num}人 {city}"
                current_num = num
        else:
            if count_twitter(ranking) >= 230:
                ranking += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{yesterday}_week.html)"
                break
            else:
                ranking += f", {city}"
    post(ranking)

    return ranking
def ranking_week():
    if not (os.path.isfile("ranking_week.lock")):
        this_mo = pandas.read_pickle("database.zip")
        # this_mo = pandas.read_pickle(f"{os.path.splitext(pdf_name)[0]}.zip")
        this_week = this_mo[this_mo["発表日"] >= datetime.today() -
                            timedelta(days=8) - timedelta(hours=6)]
        pd_week = pandas.DataFrame(
            collections.Counter(this_week["住居地"]).most_common())
        pd_week[0] = [_.replace("⻄", "西") for _ in pd_week[0]]

        ranking_text = "昨日まで直近1週間の新型コロナウイルス感染者数ランキング\n"
        rank = 0
        num_prior = 0
        yesterday = datetime.today() - timedelta(days=1)

        for city, num in zip(pd_week[0], pd_week[1]):
            if num == num_prior:
                # if parse_tweet(ranking_text).weightedLength > 258:
                if parse_tweet(ranking_text).weightedLength > 223:
                    ranking_text += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{str(yesterday.date())}_week.html)"
                    break
                else:
                    ranking_text += f", {city}"
            else:
                # if parse_tweet(ranking_text).weightedLength > 252:
                if parse_tweet(ranking_text).weightedLength > 227:
                    ranking_text += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{str(yesterday.date())}_week.html)"
                    break
                else:
                    rank += 1
                    ranking_text += f"\n{rank}位 {num}人: {city}"
            num_prior = num * 1
        # print(ranking_text, parse_tweet(ranking_text).weightedLength)
        post(ranking_text)
        # print(header)
        with open("ranking_week.lock", "w", encoding="utf-8") as f:
            f.write("")
Exemple #9
0
def post_toyota():
    # if os.path.isfile("toyota_lock.zip"):
    #     pass
    # else:
    load_url = 'https://www.city.toyota.aichi.jp/kurashi/kenkou/eisei/1039225.html'
    html = requests.get(load_url)
    soup = BeautifulSoup(html.content, "html.parser")
    toyota_new = soup.find(class_="objectlink")
    today = f"{datetime.today().month}月{datetime.today().day}日"
    article_text = toyota_new.find("li").text
    article_url = urljoin(load_url, toyota_new.find("li").find('a')['href'])

    today = datetime.today()
    nums = re.findall(r"\d+", article_text)
    # print(nums)
    date = datetime.strptime(f"{nums[0]}月{nums[1]}日", "%m月%d日")
    if (today.month == date.month) & (today.day == date.day):
        is_today = True
    else:
        is_today = False

    is_zero = False
    if not is_today:
        load_url2 = "https://www.city.toyota.aichi.jp/kurashi/kenkou/eisei/1037578.html"

        html = requests.get(load_url2)
        soup = BeautifulSoup(html.content, "html.parser")
        toyota_new = soup.find("h2")
        article_text = toyota_new.next_element.next_element.next_element.text
        nums = re.findall(r"\d+", article_text)
        is_zero = "いません" in article_text
        date = datetime.strptime(f"{nums[0]}月{nums[1]}日", "%m月%d日")
        if (today.month == date.month) & (today.day == date.day):
            is_today = True
        else:
            is_today = False

    # ex1 = "市内在住者(3人)が新型コロナウイルスに感染したことが判明しました。(1248~1250例目)"
    if is_today:
        if len(nums) == 3:
            num_today = 1
        elif is_zero:
            num_today = 0
        else:
            num_today = int(nums[3]) - int(nums[2]) + 1
            # num_today = int(nums[2])
        df0 = pandas.read_pickle("database.zip")
        num_last_week = get_number_by_delta(df0, -7, region="豊田市")
        youbi = get_day_of_week_jp(today)

        if not os.path.isfile("toyota_lock.zip"):
            header = f'[速報]豊田市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
        elif int(pandas.read_pickle("toyota_lock.zip").loc["豊田市",
                                                           "本日"]) < num_today:
            header = f'[更新]豊田市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)に更新されました。詳細は公式サイトを参照 > {article_url}'
        else:
            header = None
        if (header is not None) and (num_today > 0):
            data_for_save = pandas.DataFrame([{
                '本日': num_today,
                '先週': num_last_week
            }],
                                             index=['豊田市'])
            data_for_save.to_pickle("toyota_lock.zip")
            post(header)
            time.sleep(5)
            print("豊田市更新しました", datetime.today())
Exemple #10
0
        if h3.find("a") is not None:
            article_url = urljoin(load_url,
                                  h3.find("a")['href'].replace("./", ""))
        else:
            article_url = load_url
        # print(article_url)
        youbi = get_day_of_week_jp(today)
        if not os.path.isfile("okazaki_lock.zip"):
            header = f'[速報]岡崎市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)でした。詳細は公式サイトを参照 > {article_url}'
        elif int(pandas.read_pickle("okazaki_lock.zip").loc["岡崎市",
                                                            "本日"]) < num_today:
            header = f'[更新]岡崎市の本日の新型コロナウイルスの新規感染者数は{num_today}人(先週の{youbi}に比べて{num_today-num_last_week:+}人)に更新されました。詳細は公式サイトを参照 > {article_url}'
        else:
            header = None
        if header is not None:
            post(header)
            # print(header)
            data_for_save = pandas.DataFrame([{
                '本日': num_today,
                '先週': num_last_week
            }],
                                             index=['岡崎市'])
            data_for_save.to_pickle("okazaki_lock.zip")
            time.sleep(5)
            print("岡崎市更新しました", datetime.today())


def post_toyohashi():
    if os.path.isfile("toyohashi_lock.zip"):
        pass
    else:
    # compile then match
    repatter = re.compile(pattern)
    result = repatter.match(text)

    return int(result.group(1))


def get_last_total_number() -> int:
    from twitter_post import get_posts
    timelines = get_posts()
    text_line_text = get_last_post(timelines)
    return extract_total_number(text_line_text)


if __name__ == "__main__":
    post()
    # post2_vaccination()
    # medical = get_medical_number(get_medical_data())
    # non_medical = get_non_medical_number(get_open_data())
    # print(generate_headline_first_second(medical, non_medical))
    # a = get_vaccination_number_from_open_data_df("summary_by_prefecture.csv")
    # print(a["count_first_or_mid_general"])
    # print(a["count_second_or_full_general"])
    # print(get_medical_number("IRYO-kenbetsu-vaccination_data.xlsx"))
    # df_m = get_df("IRYO-kenbetsu-vaccination_data.xlsx", "医療従事者接種回数")

    # print(generate_headline())
    # print(get_open_data())
    # print(get_vaccination_number())
def ranking_today():
    if not (os.path.isfile("ranking_today.lock")):
        press_url = "https://www.pref.aichi.jp/site/covid19-aichi/index-2.html"
        html = requests.get(press_url)
        soup = BeautifulSoup(html.content, "html.parser")

        # デプロイ前にタイムデルタを取る
        # today = (datetime.today()).strftime('%Y年%-m月%-d日')
        today = (datetime.today() - timedelta(days=1) -
                 timedelta(hours=6)).strftime('%Y年%-m月%-d日')

        url_flake = ""
        for li in soup.find(class_="list_ccc").find_all("li"):
            if (today in li.text) & ("感染者の発生" in li.text) & ("愛知県職員における"
                                                             not in li.text):
                url_flake = li.find("a")["href"]
        if url_flake != "":
            today_url = urljoin(multi_dirname(press_url, 3), url_flake)
            html = requests.get(today_url)
            soup = BeautifulSoup(html.content, "html.parser")
            pdf_url = urljoin(
                multi_dirname(press_url, 3),
                soup.find(class_="detail_free").find("a")["href"])
            pdf_file_path = os.path.join(
                "data",
                f"{str(datetime.today()-timedelta(hours=6)).split()[0]}_aichi.pdf"
            )
            urlretrieve(pdf_url, pdf_file_path)

            tbls = camelot.read_pdf(pdf_file_path, pages='1-end')

            dfs = []
            for table in tbls:
                df = table.df
                dfs.append(df)
            df_all = pandas.concat(dfs)

            df_all.columns = df_all.iloc[0, :]
            df_all = df_all[df_all["年代"] != "年代"]

            # デプロイ前にタイムデルタを消す
            # _name = str(datetime.today()).split()[0]
            # _name = str(datetime.today() - timedelta(days=1)).split()[0]
            # df_zentai = pandas.read_pickle(
            #     os.path.join("data", f"{_name}_from_sum.zip"))
            df_zentai = get_last_numbers_from_posts(get_posts(tweet_number=30),
                                                    day_before=1)
            df_zentai.pop("愛知県管轄")
            df_zentai = pandas.DataFrame.from_dict(df_zentai, orient="index")
            df_zentai.columns = ["本日"]

            aichi_kobetsu = pandas.DataFrame(
                collections.Counter(df_all["居住地"]).most_common())
            aichi_kobetsu = aichi_kobetsu.set_index(0)
            aichi_kobetsu.columns = ["本日"]
            aichi_total = pandas.concat([
                aichi_kobetsu, df_zentai[df_zentai.index != "愛知県"]
            ]).sort_values("本日", ascending=False)
            ranking_text = "昨日の新型コロナウイルス感染者数ランキング\n"
            rank = 0
            num_prior = 0
            yesterday = datetime.today() - timedelta(days=1)
            for city, num in zip(aichi_total.index, aichi_total["本日"]):
                if num == num_prior:
                    if parse_tweet(ranking_text).weightedLength > 233:
                        # if parse_tweet(ranking_text).weightedLength > 258:
                        ranking_text += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{str(yesterday.date())}.html)"
                        break
                    else:
                        ranking_text += f", {city}"
                else:
                    if parse_tweet(ranking_text).weightedLength > 226:
                        # if parse_tweet(ranking_text).weightedLength > 251:
                        ranking_text += f"(以下 https://narumi-midori.net/twitter_aichi_covid19/{str(yesterday.date())}.html)"
                        break
                    else:
                        rank += 1
                    ranking_text += f"\n{rank}位 {num}人: {city}"
                num_prior = num * 1
            # print(ranking_text)

            post(ranking_text)
            with open("ranking_today.lock", "w", encoding="utf-8") as f:
                f.write("")
Exemple #13
0
def post_cities():
    from twitter_post import get_posts, post
    numbers_from_tweets = get_last_numbers_from_posts(get_posts())

    info = pre_post("岡崎市", get_okazaki_info)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    info = pre_post("豊橋市", get_toyohashi_info)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    info = pre_post("豊田市", get_toyota_info, engine_number=2)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    info = pre_post("一宮市", get_ichinomiya_info)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    info = pre_post("名古屋市", get_nagoya_info)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    info = pre_post("愛知県管轄自治体(名古屋市・豊橋市・豊田市・岡崎市・一宮市を除く愛知県)", get_aichi_ken_info)
    # print(info)
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])

    # info_list = [info_okazaki, info_toyohashi, info_toyota,
    #              info_ichinomiya, info_nagoya, info_aichi_ken]
    # for info in info_list:
    #     print(f"----------{info['city']}---------")
    #     print(numbers_from_tweets[info["city"]])
    #     print(info)
    #     if (info["is_postable"]) & (numbers_from_tweets[info["city"]] < info["number_today"]):
    #         print(info["headline"])
    #     else:
    #         print("Not postable", info['city'])
    time.sleep(20)
    numbers_from_tweets = get_last_numbers_from_posts(get_posts())
    info = pre_post_zentai(get_zentai_info, numbers_from_tweets)
    print("-------------全体-------------")
    # post(info_zentai["headline"])
    if (info["is_postable"]) & (numbers_from_tweets[info["city"]] <
                                info["number_today"]):
        # print(info["headline"])
        post(info["headline"])
    else:
        print(info["city"], info["is_postable"],
              numbers_from_tweets[info["city"]], info["number_today"])