Exemple #1
0
def e2n(N, tmpdir='/tmp', hfx=1, Sg=1, Sv=1):
    """
    E[2]*N linear transformation:

     [k,F] = [k(pq)E(Sv)(pq), F(rs)E(rs)]
           = k(pq)F(rs) (E(ps)d(rq) - E(rq)d(ps))
           = k(pq)F(ps)E(ps) - k(pq)F(rp)E(rq)
           = [k,F](pq)E(pq)
           = kF
    <[q,kF]> = <[E_{pq}, kF(rs)E(rs)]>
             = kF(rs) <E(ps)d(rq) - E(rq)d(ps)>
             = kF(qs)D(ps) - kF(rp)D(rq)
             = [D, kF.T](pq)
    kD = <[k, E(pq)]>
       = <[k(rs) E(rs), E(pq)]>
       = k(rs) (E(rq)d(ps) - E(ps)d(rq))
       = k(rp)D(rq) - k(qs)D(ps)
       = [k.T, D](p,q)
    Fk = F[kD]
    """

    SIRIFC = os.path.join(tmpdir, 'SIRIFC')
    AOONEINT = os.path.join(tmpdir, 'AOONEINT')
    AOTWOINT = os.path.join(tmpdir, 'AOTWOINT')
    LUINDF = os.path.join(tmpdir, 'LUINDF')

    ifc = sirifc.sirifc(SIRIFC)
    cmo = get_cmo(AOONEINT, SIRIFC)

    h = one.read('ONEHAMIL', filename=AOONEINT).unblock().unpack()
    S = one.read('OVERLAP',  filename=AOONEINT).unblock().unpack().view(util.full.matrix)

    da, db = get_densities(SIRIFC)

    kN = rspvec.tomat(N, ifc, tmpdir=tmpdir).view(util.full.matrix).T
    kn = (cmo*kN*cmo.T).view(util.full.matrix)

    dak = (kn.T*S*da - da*S*kn.T)
    dbk = (kn.T*S*db - db*S*kn.T)*Sv


    (fa, fb), = two.fockab((da, db),  filename=AOTWOINT, hfx=hfx)
    fa += h; fb += h
    (fak, fbk), = two.fockab((dak, dbk), filename=AOTWOINT, hfx=hfx)

    kfa = (S*kn*fa - fa*kn*S)
    kfb = (S*kn*fb - fb*kn*S)*Sv

    fa = fak + kfa
    fb = fbk + kfb

    gao = S*(da*fa.T + Sg*db*fb.T) - (fa.T*da + Sg*fb.T*db)*S
    gm = cmo.T*gao*cmo

    # sign convention <[q,[k,F]]> = -E[2]*N
    gv = - rspvec.tovec(gm, ifc)

    return gv
Exemple #2
0
    def test_h1diag_initial_energy(self):

        Da, Db = self.dab()
        (Fa, Fb), = two.fockab((Da, Db), filename=self.aotwoint)
        E = self.EN + rohf.energy(Da, Db, self.h1, Fa, Fb)
        Eref = -73.4538472272
        assert E == approx(Eref)
Exemple #3
0
 def test_fab_f(self):
     """Test alpha and beta Fock matrix, Fortran version"""
     d_a = Matrix((6, 6))
     d_b = Matrix((6, 6))
     d_a[0, 0] = 1
     d_a[1, 1] = 1
     d_b[0, 0] = 1
     (f_a, f_b), = fockab((d_a, d_b), filename=os.path.join(self.suppdir, "AOTWOINT"), f2py=True)
     np.testing.assert_allclose(f_a, self.faref)
     np.testing.assert_allclose(f_b, self.fbref)
Exemple #4
0
def E3(pB, pC, ifc, **kwargs):
    """ Emulate the so called E3 contribution to a quadratic response function
        <<A; B, C>> = NA  E3 (NB NC +  NC NB) + A2 (NB NC + NC NB) + NA (B2 NC + C2 NB)

        Emulation of current Dalton implementation in terms of high spin fock matrices
        Closed and open shell matrices
        Dc = inactive 
        Do = -active
        Fc = Fa+Q
        Fo = ? CHECK

        Formulas
        1/2*[qa, [kb, [kc, H]]] + P(b,c)

        [kc, H] = (p~q|rs)H(Sc, 0) + (pq|r~s) H(0, Sc)
        [kb, [kc, H]] 
                = (p~~q|rs)H(SbSc, 0) + (p~q|r~s) H(Sb, Sc)
                + (p~q|r~s)H(Sc, Sb) + (pq|r~~s) H(0, SbSc)

        and for 
        H(S1, S2) generates Fock from (D(S1) g D(S2) - Da g Da - Db g Db
        F(S1, S2) = E(S1) g D(S2) - D(S1) g E(S2) - Ea g Da - Da g Ea - Eb g Db - Db g Eb
                  = Ea [ g D(S2) - D(S1) g - g Da - Da g ]
                  + Eb [ S1 g D(S2) - D(S1) g S2  - g Db - Db g ]
    """


    tmpdir = kwargs.get('tmpdir', '/tmp')
    AOONEINT = os.path.join(tmpdir, "AOONEINT")
    h = one.read(label='ONEHAMIL', filename=AOONEINT).unpack().unblock()
    S = one.read(label='OVERLAP', filename=AOONEINT).unblock().unpack()

    AOTWOINT = os.path.join(tmpdir, "AOTWOINT")
    kwargs['filename'] = AOTWOINT


    cmo = ifc.cmo.unblock()
    kB = cmo*pB["kappa"]*cmo.T
    kC = cmo*pC["kappa"]*cmo.T
    kB_ = kB*S
    _kB = S*kB
    kC_ = kC*S
    _kC = S*kC

    sB = pB.get("spin", 1)
    sC = pC.get("spin", 1)
   
    #
    # Fock matrices
    #
    da, db = dens.Dab(ifc_=ifc)
    (fa, fb), = two.fockab((da, db), **kwargs)
    fa += h
    fb += h
    Bfa, Bfb = [_kB*f - f*kB_ for f in (fa, sB*fb)]
    Cfa, Cfb = [_kC*f - f*kC_ for f in (fa, sC*fb)]
    
    BCfa, BCfb = [_kB*Cf - Cf*kB_ for Cf in (Cfa, sB*Cfb)]
    CBfa, CBfb = [_kC*Bf - Bf*kC_ for Bf in (Bfa, sC*Bfb)]

    daB, dbB = [_kB.T*d - d*kB_.T  for d in (da, sB*db)]
    (faB, fbB), = two.fockab((daB, dbB), **kwargs)
    CfaB, CfbB = [_kC*fB - fB*kC_ for fB in (faB, sC*fbB)]

    daC, dbC = [_kC.T*d - d*kC_.T  for d in (da, sC*db)]
    (faC, fbC), = two.fockab((daC, dbC), **kwargs)
    BfaC, BfbC = [_kB*fC - fC*kB_ for fC in (faC, sB*fbC)]
    
    daBC, dbBC  = (_kB.T*dC - dC*kB_.T for dC in (daC, sB*dbC))
    daCB, dbCB  = (_kC.T*dB - dB*kC_.T for dB in (daB, sC*dbB))
    daBC = 0.5*(daBC + daCB)
    dbBC = 0.5*(dbBC + dbCB)
    (faBC, fbBC), = two.fockab((daBC, dbBC), **kwargs)

 #
 # Add all focks
 #
    fa = faBC + BfaC + CfaB + .5*(BCfa + CBfa)
    fb = fbBC + BfbC + CfbB + .5*(BCfb + CBfb)

    G = cmo.T*(S*(da*fa.T + db*fb.T) - (fa.T*da + fb.T*db)*S)*cmo
    #G =  cmo.T*(S*da*fa.T - fa.T*da *S)*cmo + \
    #      cmo.T*(S*db*fb.T - fb.T*db *S)*cmo 


    Gv = rspvec.tovec(G, ifc)
    #print Gv

    return Gv
Exemple #5
0
def udiis(
    Ca,
    Cb,
    na,
    nb,
    iters=10,
    fock=jensen,
    hfx=1,
    threshold=1e-6,
    maxerr=2,
    unrest=False,
    wrkdir="/tmp",
):
    print(Ca, Cb)
    saveD = 1
    saveC = 0
    E = 0
    aooneint = os.path.join(wrkdir, "AOONEINT")
    aotwoint = os.path.join(wrkdir, "AOTWOINT")
    potnuc = one.readhead(aooneint)["potnuc"]
    vecs = []
    vecsa = []
    vecsb = []
    evecsa = []
    evecsb = []
    Eit = []
    S = one.read("OVERLAP", aooneint).unpack().unblock()
    h = S.I @ one.read("ONEHAMIL", aooneint).unpack().unblock()
    Da = dens.C1D(Ca, na) @ S
    Db = dens.C1D(Cb, nb) @ S

    try:
        for i in range(iters):
            Da = dens.C1D(Ca, na) @ S
            Db = dens.C1D(Cb, nb) @ S
            print("D", (Da + Db) @ S.I)
            (Fa, Fb), = two.fockab((Da, Db), hfx=hfx, filename=aotwoint)
            Fa = h + S.I @ Fa
            Fb = h + S.I @ Fb
            E0 = E
            E = ((Da @ (h + Fa)) + (Db @ (h + Fb))).tr() / 2 + potnuc
            D = Da + Db
            print("hd", (h @ D).tr(), h & D, h & D.T)
            print("FD", Fa & Da)
            Eit.append(E)
            ga = Da @ Fa - Fa @ Da
            gb = Db @ Fb - Fb @ Db
            if unrest:
                g2 = -(ga @ ga + gb @ gb)
            else:
                g2 = -(ga + gb) @ (ga + gb)
            gn = math.sqrt(g2.tr())
            print("%2d:E = %16.12f %16.5e %16.2e" % (i + 1, E, gn, E - E0))
            if gn < threshold:
                raise Converged(gn)
            # if E > E0:
            #     raise Exception("Energy increase")
            if unrest:
                Ca = dens.cmo(Fa)
                Cb = dens.cmo(Fb)
                # Ca = Ca*Ua
                # Cb = Cb*Ub
            else:
                Ca = dens.cmo(Feff(Da, Db, Fa, Fb), S)
                Cb = Ca[:, :]
            Da = dens.C1D(Ca, na) @ S
            Db = dens.C1D(Cb, nb) @ S
            if saveD:
                vecsa.append(Da)
                vecsb.append(Db)
                evecsa.append(ga @ Da - Da @ ga)
                evecsb.append(gb @ Db - Db @ gb)
            elif saveC:
                vecsa.append(Ca)
                vecsb.append(Cb)
                evecsa.append(ga)
                evecsb.append(gb)
            else:
                vecsa.append(Fa)
                vecsb.append(Fb)
                evecsa.append(ga)
                evecsb.append(gb)
            edim = min(len(evecsa), maxerr)
            eva = evecsa[-edim:]
            evb = evecsb[-edim:]
            fva = vecsa[-edim:]
            fvb = vecsb[-edim:]
            B = mkB3(eva, evb, unrest)
            rhs = full.matrix((edim + 1, 1))
            rhs[-1, 0] = -1
            c = rhs / B
            subvecsa = full.matrix(Fa.shape)
            subvecsb = full.matrix(Fb.shape)
            for j in range(edim):
                subvecsa += c[j, 0] * fva[j]
                subvecsb += c[j, 0] * fvb[j]
            if saveD:
                Da = subvecsa
                Db = subvecsb
                (Fa, Fb), = two.fockab((Da, Db), hfx=hfx, filename=aotwoint)
                Fa = h + S.I @ Fa
                Fb = h + S.I @ Fb
                vecsa[i] = Da
                vecsb[i] = Db
            elif saveC:
                Ca = subvecsa
                Cb = subvecsb
                Da = dens.C1D(Ca, na) @ S
                Db = dens.C1D(Cb, nb) @ S
            else:
                Fa = subvecsa
                Fb = subvecsb
                Da = dens.C1D(Ca, na) @ S
                Db = dens.C1D(Cb, nb) @ S
    except Converged:
        print("Converged after %d iterations\n" % (i + 1, ))
    except Increase:
        print("Ca Cb", Ca, Cb)
        print("Da Db", Da, Db)
        print("Na Nb", Da.tr(), Db.tr())
        print("Fa Fb", Fa, Fb)
        print("E1", (h * (Da + Db)).tr())
        print("E2", (Fa * Da + Fb * Db).tr() / 2 - (h * (Da + Db)).tr() / 2)
        print("E", E - potnuc)
Exemple #6
0
def uroothan(Ca,
             Cb,
             na,
             nb,
             hfx=1,
             iters=10,
             threshold=1e-6,
             unrest=False,
             wrkdir="/tmp"):
    """
    Open-shell Roothan iterations, restricted or unrestricted
    """
    if unrest:
        print("Unrestricted HF Na=%d Nb=%d\n" % (na, nb))
    else:
        print("Restricted RHF Na=%d Nb=%d\n" % (na, nb))
    E0 = 0.0
    aooneint = os.path.join(wrkdir, "AOONEINT")
    aotwoint = os.path.join(wrkdir, "AOTWOINT")
    h = one.read("ONEHAMIL", aooneint).unpack().unblock()
    S = one.read("OVERLAP", aooneint).unpack().unblock()
    potnuc = one.readhead(aooneint)["potnuc"]
    print(potnuc)
    iterinf = []
    try:
        for i in range(iters):
            Da = dens.C1D(Ca, na)
            Db = dens.C1D(Cb, nb)
            (Fa, Fb), = fockab((Da, Db), hfx=hfx, filename=aotwoint)
            Fa += h
            Fb += h
            E = 0.5 * ((Da & (h + Fa)) + (Db & (h + Fb))) + potnuc
            ga = S @ Da @ Fa - Fa @ Da @ S
            gb = S @ Db @ Fb - Fb @ Db @ S
            g = ga + gb
            if unrest:
                g2 = -(ga @ ga + gb @ gb)
            else:
                g2 = (ga + gb) @ (S.I @ (ga + gb) @ S.I).T
            gn = sqrt(g2.tr())
            gn = sqrt(2 * (ga + gb) & (S.I @ (ga + gb) @ S.I))
            iterinf.append((E, gn))
            print("%2d:E=%16.10f %16.5e %16.2e" % (i + 1, E, gn, E - E0))
            if gn < threshold:
                raise Converged(gn)
            if unrest:
                Ca = dens.cmo(Fa, S)
                Cb = dens.cmo(Fb, S)
            else:
                D = Da + Db
                Ds = Da - Db
                Fs = Fa - Fb
                ID = S.I - D
                F0 = (Fa + Fb) / 2
                V = sum(S @ P @ (g - F0) @ Q @ S
                        for P, Q in combinations((Db, Da - Db, S.I - Da), 2))
                V += V.T
                V = jensen(S, 2 * Db, Da - Db, F0, Fa)
                # F = ((Fa + Fb) + Ds @ Fs @ ID + ID @ Fs @ Ds) / 2
                F = F0 + V
                F = S @ Feff(Da @ S, Db @ S, S.I @ Fa, S.I @ Fb)
                Ca = dens.cmo(F, S)
                Cb = Ca
    except Converged:
        print("-Converged-")
    if unrest:
        return (Ca, Cb)
    else:
        return Ca
Exemple #7
0
 def fab(self):
     da, db = self.dab()
     (fa, fb), = two.fockab((da, db), filename=self.aotwoint)
     return fa, fb