Exemple #1
0
    def get_spectrum_measurement( self, angle_vals, kernels, output_name,
        angle_units='arcmin', windows="SAMPLE", angle_lims=None):

        # The fits format stores all the measurements
        # as one long vector.  So we build that up here from the various
        # bins that we will load in.  These are the different columns
        bin1 = []
        bin2 = []
        value = []
        angular_bin = []
        angle = []
        if angle_lims is not None:
            angle_min = []
            angle_max = []
        else:
            angle_min, angle_max = None, None
        n_angle_sample = len(angle_vals)
 
        #If real-space, get angle_vals in radians for interpolation
        if angle_units is not None:
            angle_vals_with_units = angle_vals * twopoint.ANGULAR_UNITS[angle_units]
            angle_vals_interp = (angle_vals_with_units.to(twopoint.ANGULAR_UNITS["rad"])).value
        else:
            angle_vals_interp = angle_vals

        # Bin pairs. Varies depending on auto-correlation
        for (i,j) in self.bin_pairs:
            spec_interp = self.spec_interps[(i,j)]
            # Convert arcmin to radians for the interpolation
            spec_sample = spec_interp( angle_vals_interp )
            #cl_sample = interp1d(theory_angle, cl)(angle_sample_radians)
            # Build up on the various vectors that we need
            bin1.append(np.repeat(i, n_angle_sample))
            bin2.append(np.repeat(j, n_angle_sample))
            value.append(spec_sample)
            angular_bin.append(np.arange(n_angle_sample))
            angle.append(angle_vals)
            if angle_lims is not None:
                angle_min.append( angle_lims[:-1] )
                angle_max.append( angle_lims[1:] )


        # Convert all the lists of vectors into long single vectors
        bin1 = np.concatenate(bin1)
        bin2 = np.concatenate(bin2)
        angular_bin = np.concatenate(angular_bin)
        value = np.concatenate(value)
        angle = np.concatenate(angle)
        if angle_lims is not None:
            angle_min = np.concatenate(angle_min)
            angle_max = np.concatenate(angle_max)
        bins = (bin1, bin2)

        # Build the output object type reqired.
        s = twopoint.SpectrumMeasurement(output_name, bins, self.types, kernels, windows,
                                         angular_bin, value, angle=angle, 
                                         angle_unit=angle_units, angle_min=angle_min,
                                         angle_max=angle_max )
        return s
Exemple #2
0
 def makeSpectrum(self, name, types, angle_unit, kernels=(None, None)):
     self.tIL1 = np.concatenate(self.tIL1)
     self.tIL2 = np.concatenate(self.tIL2)
     self.aIL = np.concatenate(self.aIL)
     self.angList = np.concatenate(self.angList)
     self.valList = np.concatenate(self.valList)
     spec = twopoint.SpectrumMeasurement(name, (self.tIL1, self.tIL2),
                                         types,
                                         kernels,
                                         'SAMPLE',
                                         self.aIL,
                                         self.valList,
                                         angle=self.angList,
                                         angle_unit=angle_unit)
     return spec
    def init_specs(self):

        dtype1 = [
            twopoint.Types.galaxy_shear_plus_real,
            twopoint.Types.galaxy_shear_minus_real,
            twopoint.Types.galaxy_position_real,
            twopoint.Types.galaxy_position_real
        ]
        dtype2 = [
            twopoint.Types.galaxy_shear_plus_real,
            twopoint.Types.galaxy_shear_minus_real,
            twopoint.Types.galaxy_shear_plus_real,
            twopoint.Types.galaxy_position_real
        ]
        nznameindex1 = [0, 0, 1, 1]
        nznameindex2 = [0, 0, 0, 1]

        # Setup xi extensions
        self.exts = []
        for i, name in enumerate(TWO_POINT_NAMES):
            self.exts.append(
                twopoint.SpectrumMeasurement(
                    name,  # hdu name
                    ([], []),  # tomographic bins
                    (dtype1[i], dtype2[i]),  # type of 2pt statistic
                    (NOFZ_NAMES[nznameindex1[i]],
                     NOFZ_NAMES[nznameindex2[i]]),  # associated nofz
                    "SAMPLE",  # window function
                    None,  # id
                    None,  # value
                    npairs=None,  # pair counts
                    angle=None,
                    angle_unit='arcmin'))  # units

        if self.params['lensfile'] == 'None':
            self.exts = self.exts[:2]

        return
def spectrum_measurement_from_block(block, section_name, output_name, types,
                                    kernels, angle_sample, real_space):

    # The dictionary type_table stores the codes used in the FITS files for
    # the types of spectrum
    type_codes = (types[0].name, types[1].name)
    _, _, bin_format = type_table[type_codes]

    # for cross correlations we must save bin_ji as well as bin_ij.
    # but not for auto-correlations. Also the numbers of bins can be different
    is_auto = (types[0] == types[1])
    if block.has_value(section_name, "nbin"):
        nbin_a = block[section_name, "nbin"]
    else:
        nbin_a = block[section_name, "nbin_a"]
        nbin_b = block[section_name, "nbin_b"]

    # This is the ell values that have been calculated by cosmosis, not to
    # be confused with the ell values at which we want to save the results
    #(which is ell_sample)
    if real_space:
        # This is in radians
        theory_angle = block[section_name, "theta"]
        angle_sample_radians = np.radians(angle_sample / 60.)
    else:
        theory_angle = block[section_name, "ell"]
        angle_sample_radians = angle_sample

    # This is the length of the sample values
    n_angle_sample = len(angle_sample)

    # The fits format stores all the measurements
    # as one long vector.  So we build that up here from the various
    # bins that we will load in.  These are the different columns
    bin1 = []
    bin2 = []
    value = []
    angular_bin = []
    angle = []

    # Bin pairs. Varies depending on auto-correlation
    for i in range(nbin_a):
        if is_auto:
            jmax = i + 1
        else:
            jmax = nbin_b
        for j in range(jmax):

            # Load and interpolate from the block
            cl = block[section_name, bin_format.format(i + 1, j + 1)]
            # Convert arcmin to radians for the interpolation
            cl_interp = SpectrumInterp(theory_angle, cl)
            cl_sample = cl_interp(angle_sample_radians)
            #cl_sample = interp1d(theory_angle, cl)(angle_sample_radians)
            # Build up on the various vectors that we need
            bin1.append(np.repeat(i + 1, n_angle_sample))
            bin2.append(np.repeat(j + 1, n_angle_sample))
            value.append(cl_sample)
            angular_bin.append(np.arange(n_angle_sample))
            angle.append(angle_sample)

    # Convert all the lists of vectors into long single vectors
    bin1 = np.concatenate(bin1)
    bin2 = np.concatenate(bin2)
    angular_bin = np.concatenate(angular_bin)
    value = np.concatenate(value)
    angle = np.concatenate(angle)
    bins = (bin1, bin2)

    # At the moment we only support this window function
    windows = "SAMPLE"

    if real_space:
        angle_unit = "arcmin"
    else:
        angle_unit = None
    # Build the output object type reqired.
    s = twopoint.SpectrumMeasurement(output_name,
                                     bins,
                                     types,
                                     kernels,
                                     windows,
                                     angular_bin,
                                     value,
                                     angle=angle,
                                     angle_unit=angle_unit)
    return s
Exemple #5
0
def run_treecorr(config_file, tomo_file, cat_file, output_file):
    config = treecorr.read_config(config_file)

    tomo_data = fitsio.read(tomo_file)
    shear_data = fitsio.read(cat_file)
    tomo_header = fitsio.read_header(tomo_file, 1)
    nbin = tomo_header.get("NBIN")

    gg = treecorr.GGCorrelation(config)
    theta = []
    xip = []
    xim = []
    bin1 = []
    bin2 = []
    angbin = []

    print("Not doing the proper ngmix weighting in this test!")

    for b1 in range(nbin):
        w1 = np.where(tomo_data['BIN'] == b1 + 1)
        d1 = shear_data[w1]
        cat1 = treecorr.Catalog(g1=d1['E_1'],
                                g2=d1['E_1'],
                                w=d1['W'],
                                ra=d1['RA'],
                                dec=d1['DEC'],
                                ra_units='deg',
                                dec_units='deg')
        for b2 in range(nbin):
            if b2 < b1:
                continue

            w2 = np.where(tomo_data['BIN'] == b2 + 1)
            d2 = shear_data[w2]
            cat2 = treecorr.Catalog(g1=d2['E_1'],
                                    g2=d2['E_1'],
                                    w=d2['W'],
                                    ra=d2['RA'],
                                    dec=d2['DEC'],
                                    ra_units='deg',
                                    dec_units='deg')
            gg.process(cat1, cat2)
            ntheta = len(gg.meanr)
            theta.append(gg.meanr)
            xip.append(gg.xip)
            xim.append(gg.xim)
            bin1.append(np.repeat(b1, ntheta))
            bin2.append(np.repeat(b2, ntheta))
            angbin.append(np.arange(ntheta, dtype=int))

    theta = np.concatenate(theta)
    xip = np.concatenate(xip)
    xim = np.concatenate(xim)
    bin1 = np.concatenate(bin1)
    bin2 = np.concatenate(bin2)
    angbin = np.concatenate(angbin)

    tp = twopoint.Types.galaxy_shear_plus_real
    tm = twopoint.Types.galaxy_shear_minus_real

    XIP = twopoint.SpectrumMeasurement("xip", (bin1, bin2), (tp, tp),
                                       ("source", "source"),
                                       "SAMPLE",
                                       angbin,
                                       xip,
                                       angle=theta,
                                       angle_unit="arcmin")
    XIM = twopoint.SpectrumMeasurement("xim", (bin1, bin2), (tm, tm),
                                       ("source", "source"),
                                       "SAMPLE",
                                       angbin,
                                       xim,
                                       angle=theta,
                                       angle_unit="arcmin")

    output = twopoint.TwoPointFile([XIP, XIM], [], [], None)
    output.to_fits(output_file, clobber=True)