Exemple #1
0
def polarity_process(sim_save_dir, sheet, polarity=1., perturbation=-1):
    """
    Initiate simulation before running according to parameters.

    Parameters
    ----------
    sim_save_dir : directory where saving simulation
    sheet :
    contracts : contractility rate of
    apoptotic_pattern : default None. If is None, create an apoptotic
    pattern according to the specific pattern. Else must be a list of face indices.
    """

    # Define solver
    solver = QSSolver(with_t1=False, with_t3=False, with_collisions=False)

    # Define polarity
    define_polarity(sheet, polarity, 1)
    geom.normalize_weights(sheet)

    res = solver.find_energy_min(sheet, geom, model, options={"gtol": 1e-8})
    if res.success is False:
        raise ('Stop because solver didn' 't succeed', res)

    sheet_ = run_sim(sim_save_dir, sheet, polarity, perturbation)

    return sheet_
Exemple #2
0
def test_get_force_inference():
    # INIT TISSUE
    sheet = Sheet.planar_sheet_2d('jam', 10, 10, 1, 1, noise=0)
    PlanarGeometry.update_all(sheet)

    model = model_factory([
        effectors.FaceAreaElasticity,
    ], effectors.FaceAreaElasticity)

    sheet.remove(sheet.cut_out([[0, 10], [0, 10]]))
    sheet.sanitize(trim_borders=True)
    PlanarGeometry.scale(sheet, sheet.face_df.area.mean()**-0.5, ['x', 'y'])
    PlanarGeometry.center(sheet)
    PlanarGeometry.update_all(sheet)
    sheet.reset_index()
    sheet.reset_topo()
    sheet.face_df['area_elasticity'] = 1
    sheet.face_df['prefered_area'] = 1
    solver = QSSolver(with_t1=False, with_t3=False, with_collisions=False)
    res = solver.find_energy_min(sheet,
                                 PlanarGeometry,
                                 model,
                                 options={"gtol": 1e-8})

    sheet.vert_df.y *= 0.5
    res = solver.find_energy_min(sheet,
                                 PlanarGeometry,
                                 model,
                                 options={"gtol": 1e-8})
    sheet.get_force_inference(column='tension', free_border_edges=True)

    sheet = sheet.extract_bounding_box(x_boundary=[-2, 2], y_boundary=[-1, 1])

    sheet.edge_df['angle'] = (
        np.arctan2(sheet.edge_df["dx"], sheet.edge_df["dy"]) * 180 / np.pi)
    sheet.edge_df['angle'] = sheet.edge_df['angle'].apply(lambda x: 180 + x
                                                          if x < 0 else x)
    sheet.edge_df['angle'] = sheet.edge_df['angle'].apply(lambda x: 180 - x
                                                          if x > 90 else x)

    for index, edge in sheet.edge_df[sheet.edge_df.angle > 45].iterrows():
        assert (edge.tension > 1.5)
    for index, edge in sheet.edge_df[sheet.edge_df.angle < 45].iterrows():
        assert (edge.tension < 1.5)
Exemple #3
0
def test_relaxation_convergance():
    # Here we relax a pre-counstructed periodic tissue object to its "periodic equilibrium" configuration
    # this tissue object that is loaded is far away from equilibrium 6x6 is the "periodic" equilibrium
    dsets = hdf5.load_datasets(Path(stores.stores_dir) / "planar_periodic8x8.hf5")
    specs = config.geometry.planar_sheet()
    specs["settings"]["boundaries"] = {"x": [-0.1, 8.1], "y": [-0.1, 8.1]}
    initial_box_size = 8.2
    sheet = Sheet("periodic", dsets, specs)
    coords = ["x", "y"]
    draw_specs = config.draw.sheet_spec()
    PlanarGeometry.update_all(sheet)
    solver = QSSolver(with_collisions=False, with_t1=True, with_t3=False)
    nondim_specs = config.dynamics.quasistatic_plane_spec()
    dim_model_specs = model.dimensionalize(nondim_specs)
    sheet.update_specs(dim_model_specs, reset=True)
    # epsilon is deviation of boundary between iterations
    epsilon = 1.0
    # max_dev is the max epsilon allowed for configuration to be in equilibrium
    max_dev = 0.001
    # i counts the number of solver iterations
    i = 0
    # loop ends if box size variation between iterations drops 10^-3
    # loaded tissue is far away from periodic equilibrium L=8 and equilibrium is reached around 6.06
    while np.abs(epsilon) > max_dev:
        i += 1
        if i == 1:
            previous_box_size = 0
        else:
            previous_box_size = solution_result["x"][-1]
        solution_result = solver.find_energy_min(
            sheet, PlanarGeometry, model, periodic=True
        )
        epsilon = solution_result["x"][-1] - previous_box_size
        # print(epsilon)
    final_box_size = (
        sheet.settings["boundaries"]["x"][1] - sheet.settings["boundaries"]["x"][0]
    )
    print("number of iterations  " + str(i))
    print("final box size  " + str(final_box_size))
    assert 6.06 - 0.1 < final_box_size < 6.06 + 0.1
Exemple #4
0
def get_initial_follicle(specs, recreate=False, Nc=200):
    """Retrieves or recreates a spherical epithelium"""
    if recreate:
        ## Lloy_relax=True takes time but should give more spherical epithelium
        follicle = spherical_monolayer(9.0, 12.0, Nc, apical="in", Lloyd_relax=True)
        geom.update_all(follicle)
        geom.scale(follicle, follicle.cell_df.vol.mean() ** (-1 / 3), list("xyz"))
        geom.update_all(follicle)
    else:
        follicle = Monolayer("follicle", hdf5.load_datasets("initial_follicle.hf5"))
        follicle.settings["lumen_side"] = "apical"
        geom.update_all(follicle)

    follicle.update_specs(specs, reset=True)
    follicle.cell_df["id"] = follicle.cell_df.index

    wgeom = WAMonolayerGeometry
    model = model_factory(
        [
            effectors.LumenVolumeElasticity,
            WeightedCellAreaElasticity,
            effectors.CellVolumeElasticity,
        ]
    )

    print("Finding static equilibrium")

    follicle.face_df.loc[follicle.apical_faces, "weight"] = specs["settings"][
        "apical_weight"
    ]
    wgeom.update_all(follicle)

    solver = QSSolver()
    res = solver.find_energy_min(follicle, wgeom, model)

    return follicle, model
Exemple #5
0
SIM_DIR = Path('')

today = datetime.date.today().strftime('%Y%m%d')
sim_save_dir = SIM_DIR / f'{today}-variability'

try:
    os.mkdir(sim_save_dir)
except FileExistsError:
    pass

from joblib import Parallel, delayed
import multiprocessing
from datetime import datetime

solver = QSSolver(with_t1=False, with_t3=False, with_collisions=False)

model = model_factory([
    effectors.BarrierElasticity,
    effectors.RadialTension,
    effectors.PerimeterElasticity,
    effectors.FaceAreaElasticity,
    effectors.LumenVolumeElasticity,
], effectors.FaceAreaElasticity)

apopto_pattern_kwargs = {'t': 0., 'dt': 1., 'time_of_last_apoptosis': 30.}
# apoptose
apoptosis_settings = {
    "critical_area_pulling": 10,
    "critical_area": 0.5,
    "contract_rate": 1.08,
Exemple #6
0
def run_sim(
    sim_save_dir,
    _sheet,
    polarity,
    perturbation=-1,
    stop=150.,
    iteration=0,
):

    # Define solver
    solver = QSSolver(with_t1=False, with_t3=False, with_collisions=False)

    filename = '{}_polarity{}_perturbation.hf5'.format(polarity, perturbation)
    try:
        os.mkdir(sim_save_dir)
    except IOError:
        pass

    # without copy, dataframe is on read only...
    sheet = _sheet.copy()

    sheet.face_df['is_mesoderm'] = 0
    if perturbation != -1:
        for p in perturbation:
            sheet.face_df.loc[int(p), 'is_mesoderm'] = 1

    define_polarity(sheet, 1, polarity)
    geom.normalize_weights(sheet)

    # Add some information to the sheet
    sheet.face_df['id'] = sheet.face_df.index.values

    # Initiate history
    history = HistoryHdf5(sheet,
                          extra_cols={
                              "face": sheet.face_df.columns,
                              "edge": list(sheet.edge_df.columns),
                              "vert": list(sheet.vert_df.columns)
                          },
                          hf5file=os.path.join(sim_save_dir, filename))

    # Initiate manager
    manager = EventManager('face')

    # save settings
    pd.Series(sheet.settings).to_csv(
        os.path.join(sim_save_dir, (filename[:-4] + '_settings.csv')))

    manager.append(reconnect, **sheet.settings['rosette_kwargs'])
    manager.append(apoptosis_patterning,
                   **sheet.settings['apopto_pattern_kwargs'])

    t = 0.
    stop = 150.
    # Run simulation
    while t < stop:
        if t == 5:
            for i in sheet.face_df[sheet.face_df.is_mesoderm == 1].index:
                delamination_kwargs = sheet.settings[
                    'delaminate_setting'].copy()
                delamination_kwargs.update({
                    "face_id": i,
                })
                manager.append(delamination, **delamination_kwargs)

        # Reset radial tension at each time step
        sheet.vert_df.radial_tension = 0.

        manager.execute(sheet)
        res = solver.find_energy_min(sheet,
                                     geom,
                                     model,
                                     options={"gtol": 1e-8})
        if res.success is False:
            raise ('Stop because solver didn'
                   't succeed at time t ' + str(t), res)

        # add noise on vertex position to avoid local minimal.
        sheet.vert_df[['x', 'y']] += np.random.normal(scale=1e-3,
                                                      size=(sheet.Nv, 2))
        geom.update_all(sheet)

        history.record(time_stamp=float(t))

        manager.update()
        t += 1.

    return sheet