Exemple #1
0
def replace(e, mapping):
    """Replace subexpressions in expression.

    @param e:
        An Expr or Form.
    @param mapping:
        A dict with from:to replacements to perform.
    """
    mapping2 = dict((k, as_ufl(v)) for (k, v) in mapping.items())

    # Workaround for problem with delayed derivative evaluation
    # The problem is that J = derivative(f(g, h), g) does not evaluate immediately
    # So if we subsequently do replace(J, {g: h}) we end up with an expression:
    # derivative(f(h, h), h)
    # rather than what were were probably thinking of:
    # replace(derivative(f(g, h), g), {g: h})
    #
    # To fix this would require one to expand derivatives early (which
    # is not attractive), or make replace lazy too.
    if has_exact_type(e, CoefficientDerivative):
        # Hack to avoid circular dependencies
        from ufl.algorithms.ad import expand_derivatives
        e = expand_derivatives(e)

    return map_integrand_dags(Replacer(mapping2), e)
def heat_subdomainbc(N, deg, butcher_tableau, splitting=AI):
    dt = Constant(1.0 / N)
    t = Constant(0.0)

    msh = UnitSquareMesh(N, N)

    V = FunctionSpace(msh, "CG", 2)
    x, y = SpatialCoordinate(msh)

    uexact = t*(x+y)
    rhs = expand_derivatives(diff(uexact, t)) - div(grad(uexact))

    u = interpolate(uexact, V)

    v = TestFunction(V)
    n = FacetNormal(msh)
    F = inner(Dt(u), v)*dx + inner(grad(u), grad(v))*dx - inner(rhs, v)*dx - inner(dot(grad(uexact), n), v)*ds

    bc = DirichletBC(V, uexact, [1, 2])

    luparams = {"mat_type": "aij",
                "snes_type": "ksponly",
                "ksp_type": "preonly",
                "pc_type": "lu"}

    stepper = TimeStepper(F, butcher_tableau, t, dt, u, bcs=bc,
                          solver_parameters=luparams)

    while (float(t) < 1.0):
        if (float(t) + float(dt) > 1.0):
            dt.assign(1.0 - float(t))
        stepper.advance()
        t.assign(float(t) + float(dt))

    return norm(u-uexact)
Exemple #3
0
def test_1d_heat_dirichletbc(butcher_tableau):

    # Boundary values
    u_0 = Constant(2.0)
    u_1 = Constant(3.0)

    N = 100
    x0 = 0.0
    x1 = 10.0
    msh = IntervalMesh(N, x1)
    V = FunctionSpace(msh, "CG", 1)
    dt = Constant(10.0 / N)
    t = Constant(0.0)
    (x,) = SpatialCoordinate(msh)

    # Method of manufactured solutions copied from Heat equation demo.
    S = Constant(2.0)
    C = Constant(1000.0)
    B = (x - Constant(x0)) * (x - Constant(x1)) / C
    R = (x * x) ** 0.5
    # Note end linear contribution
    uexact = (
        B * atan(t) * (pi / 2.0 - atan(S * (R - t)))
        + u_0
        + ((x - x0) / x1) * (u_1 - u_0)
    )
    rhs = expand_derivatives(diff(uexact, t)) - div(grad(uexact))
    u = interpolate(uexact, V)
    v = TestFunction(V)
    F = (
        inner(Dt(u), v) * dx
        + inner(grad(u), grad(v)) * dx
        - inner(rhs, v) * dx
    )
    bc = [
        DirichletBC(V, u_1, 2),
        DirichletBC(V, u_0, 1),
    ]

    luparams = {"mat_type": "aij", "ksp_type": "preonly", "pc_type": "lu"}
    stepper = TimeStepper(
        F, butcher_tableau, t, dt, u, bcs=bc, solver_parameters=luparams
    )

    t_end = 2.0
    while float(t) < t_end:
        if float(t) + float(dt) > t_end:
            dt.assign(t_end - float(t))
        stepper.advance()
        t.assign(float(t) + float(dt))
        # Check solution and boundary values
        assert norm(u - uexact) / norm(uexact) < 10.0 ** -5
        assert isclose(u.at(x0), u_0)
        assert isclose(u.at(x1), u_1)
Exemple #4
0
def replace(e, mapping):
    """Replace terminal objects in expression.

    @param e:
        An Expr or Form.
    @param mapping:
        A dict with from:to replacements to perform.
    """
    mapping2 = dict((k, as_ufl(v)) for (k, v) in mapping.items())

    # Workaround for problem with delayed derivative evaluation
    if has_exact_type(e, CoefficientDerivative):
        # Hack to avoid circular dependencies
        from ufl.algorithms.ad import expand_derivatives
        e = expand_derivatives(e)

    return map_integrand_dags(Replacer(mapping2), e)
Exemple #5
0
def replace(e, mapping):
    """Replace terminal objects in expression.

    @param e:
        An Expr or Form.
    @param mapping:
        A dict with from:to replacements to perform.
    """
    mapping2 = dict((k, as_ufl(v)) for (k, v) in mapping.items())

    # Workaround for problem with delayed derivative evaluation
    if has_exact_type(e, CoefficientDerivative):
        # Hack to avoid circular dependencies
        from ufl.algorithms.ad import expand_derivatives
        e = expand_derivatives(e)

    return map_integrand_dags(Replacer(mapping2), e)
def RTCFtest(N, deg, butcher_tableau, splitting=AI):

    msh = UnitSquareMesh(N, N, quadrilateral=True)

    Ve = FiniteElement("RTCF", msh.ufl_cell(), 2)
    V = FunctionSpace(msh, Ve)

    dt = Constant(0.1 / N)
    t = Constant(0.0)

    x, y = SpatialCoordinate(msh)

    uexact = as_vector(
        [t + 2 * t * x + 4 * t * y, 7 * t + 5 * t * x + 6 * t * y])
    rhs = expand_derivatives(diff(uexact, t)) + grad(div(uexact))

    u = project(uexact, V)

    v = TestFunction(V)
    F = inner(Dt(u), v) * dx + inner(div(u), div(v)) * dx - inner(rhs, v) * dx
    bc = DirichletBC(V, uexact, "on_boundary")

    luparams = {"mat_type": "aij", "ksp_type": "preonly", "pc_type": "lu"}

    stepper = TimeStepper(F,
                          butcher_tableau,
                          t,
                          dt,
                          u,
                          bcs=bc,
                          solver_parameters=luparams,
                          splitting=splitting)

    while (float(t) < 0.1):
        if (float(t) + float(dt) > 0.1):
            dt.assign(0.1 - float(t))
        stepper.advance()
        print(float(t))
        t.assign(float(t) + float(dt))

    return norm(u - uexact)
Exemple #7
0
def curltest(N, deg, butcher_tableau, splitting):

    msh = UnitSquareMesh(N, N)

    Ve = FiniteElement("N1curl", msh.ufl_cell(), 2, variant="integral")
    V = FunctionSpace(msh, Ve)

    dt = Constant(0.1 / N)
    t = Constant(0.0)

    x, y = SpatialCoordinate(msh)

    uexact = as_vector([t + 2*t*x + 4*t*y + 3*t*(y**2) + 2*t*x*y, 7*t + 5*t*x + 6*t*y - 3*t*x*y - 2*t*(x**2)])
    rhs = expand_derivatives(diff(uexact, t)) + curl(curl(uexact))

    u = interpolate(uexact, V)

    v = TestFunction(V)
    n = FacetNormal(msh)
    F = inner(Dt(u), v)*dx + inner(curl(u), curl(v))*dx - inner(curlcross(uexact, n), v)*ds - inner(rhs, v)*dx
    bc = DirichletBC(V, uexact, [1, 2])

    luparams = {"mat_type": "aij",
                "ksp_type": "preonly",
                "pc_type": "lu"}

    stepper = TimeStepper(F, butcher_tableau, t, dt, u, bcs=bc,
                          solver_parameters=luparams,
                          splitting=splitting)

    while (float(t) < 0.1):
        if (float(t) + float(dt) > 0.1):
            dt.assign(0.1 - float(t))
        stepper.advance()
        print(float(t))
        t.assign(float(t) + float(dt))

    return norm(u-uexact)
Exemple #8
0
def preprocess(form,
               object_names=None,
               common_cell=None,
               element_mapping=None):
    """
    Preprocess raw input form to obtain form metadata, including a
    modified (preprocessed) form more easily manipulated by form
    compilers. The original form is left untouched. Currently, the
    following transformations are made to the preprocessed form:

      expand_compounds    (side effect of calling expand_derivatives)
      expand_derivatives
      renumber arguments and coefficients and apply evt. element mapping
    """
    tic = Timer('preprocess')  # TODO: Reposition tic calls after refactoring.

    # Check that we get a form
    ufl_assert(isinstance(form, Form), "Expecting Form.")
    original_form = form

    # Object names is empty if not given
    object_names = object_names or {}

    # Element mapping is empty if not given
    element_mapping = element_mapping or {}

    # Create empty form data
    form_data = FormData()

    # Store copies of preprocess input data, for future validation if called again...
    form_data._input_object_names = dict(object_names)
    form_data._input_element_mapping = dict(element_mapping)
    #form_data._input_common_cell = no need to store this

    # Store name of form if given, otherwise empty string
    # such that automatic names can be assigned externally
    form_data.name = object_names.get(id(form), "")

    # Extract common cell
    common_cell = extract_common_cell(form, common_cell)

    # TODO: Split out expand_compounds from expand_derivatives
    # Expand derivatives
    tic('expand_derivatives')
    form = expand_derivatives(form, common_cell.geometric_dimension())  # EXPR

    # Propagate restrictions of interior facet integrals to the terminal nodes
    form = propagate_restrictions(form)  # INTEGRAL, EXPR

    # --- BEGIN DOMAIN SPLITTING AND JOINING
    # Store domain metadata per domain type
    form_data.domain_data = extract_domain_data(form)

    # Split up integrals and group by domain type and domain id,
    # adding integrands with same domain and compiler data
    sub_integral_data = integral_dict_to_sub_integral_data(
        form.integral_groups())
    # TODO: Replace integral_data with this through ufl and ffc?
    if 0: print_sub_integral_data(sub_integral_data)

    # Reconstruct form from these integrals in a more canonical representation
    form = reconstruct_form_from_sub_integral_data(sub_integral_data,
                                                   form_data.domain_data)

    # Represent in the way ffc expects TODO: Change ffc? Fine for now.
    form_data.integral_data = convert_sub_integral_data_to_integral_data(
        sub_integral_data)
    # --- END DOMAIN SPLITTING AND JOINING

    # --- BEGIN FUNCTION ANALYSIS
    # --- BEGIN SPLIT EXPR JOIN
    # Replace arguments and coefficients with new renumbered objects
    tic('extract_arguments_and_coefficients')
    original_arguments, original_coefficients = \
        extract_arguments_and_coefficients(form)

    tic('build_element_mapping')
    element_mapping = build_element_mapping(element_mapping, common_cell,
                                            original_arguments,
                                            original_coefficients)

    tic('build_argument_replace_map')  # TODO: Remove renumbered ones?
    replace_map, renumbered_arguments, renumbered_coefficients = \
        build_argument_replace_map(original_arguments,
                                   original_coefficients,
                                   element_mapping)

    # Note: This is the earliest point signature can be computed

    # Build mapping to original arguments and coefficients, which is
    # useful if the original arguments have data attached to them
    inv_replace_map = dict((w, v) for (v, w) in replace_map.iteritems())
    original_arguments = [inv_replace_map[v] for v in renumbered_arguments]
    original_coefficients = [
        inv_replace_map[w] for w in renumbered_coefficients
    ]

    # TODO: Build mapping from object to position instead? But we need mapped elements as well anyway.
    #argument_positions = { v: i }
    #coefficient_positions = { w: i }

    # Store data extracted by preprocessing
    form_data.original_arguments = original_arguments
    form_data.original_coefficients = original_coefficients
    # --- END SPLIT INTEGRAL JOIN

    # Mappings from elements and functions (coefficients and arguments)
    # that reside in form to objects with canonical numbering as well as
    # completed cells and elements
    # TODO: Create additional function mappings per integral,
    #       to have different counts? Depends on future UFC design.
    form_data.element_replace_map = element_mapping
    form_data.function_replace_map = replace_map

    # Store some useful dimensions
    form_data.rank = len(form_data.original_arguments)
    form_data.num_coefficients = len(form_data.original_coefficients)

    # Store argument names
    form_data.argument_names = \
        [object_names.get(id(form_data.original_arguments[i]), "v%d" % i)
         for i in range(form_data.rank)]

    # Store coefficient names
    form_data.coefficient_names = \
        [object_names.get(id(form_data.original_coefficients[i]), "w%d" % i)
         for i in range(form_data.num_coefficients)]
    # --- END FUNCTION ANALYSIS

    # --- BEGIN SIGNATURE COMPUTATION
    # TODO: Compute signatures of each INTEGRAL and EXPR as well, perhaps compute it hierarchially from integral_data?
    # Store signature of form
    tic('signature')
    # TODO: Remove signature() from Form, not safe to cache with a replacement map
    #form_data.signature = form.signature(form_data.function_replace_map)
    form_data.signature = compute_form_signature(
        form, form_data.function_replace_map)
    # --- END SIGNATURE COMPUTATION

    # --- BEGIN CONSISTENCY CHECKS
    # Check that we don't have a mixed linear/bilinear form or anything like that
    ufl_assert(
        len(compute_form_arities(form)) == 1,
        "All terms in form must have same rank.")
    # --- END CONSISTENCY CHECKS

    # --- BEGIN ELEMENT DATA
    # Store elements, sub elements and element map
    tic('extract_elements')
    form_data.argument_elements = tuple(f.element()
                                        for f in renumbered_arguments)
    form_data.coefficient_elements = tuple(f.element()
                                           for f in renumbered_coefficients)
    form_data.elements = form_data.argument_elements + form_data.coefficient_elements
    form_data.unique_elements = unique_tuple(form_data.elements)
    form_data.sub_elements = extract_sub_elements(form_data.elements)
    form_data.unique_sub_elements = unique_tuple(form_data.sub_elements)
    # --- END ELEMENT DATA

    # --- BEGIN DOMAIN DATA
    # Store element domains (NB! This is likely to change!)
    # TODO: DOMAINS: What is a sensible way to store domains for a form?
    form_data.domains = tuple(
        sorted(set(element.domain() for element in form_data.unique_elements)))

    # Store toplevel domains (NB! This is likely to change!)
    # TODO: DOMAINS: What is a sensible way to store domains for a form?
    form_data.top_domains = tuple(
        sorted(set(domain.top_domain() for domain in form_data.domains)))

    # Store common cell
    form_data.cell = common_cell

    # Store data related to cell
    form_data.geometric_dimension = form_data.cell.geometric_dimension()
    form_data.topological_dimension = form_data.cell.topological_dimension()

    # Store number of domains for integral types
    form_data.num_sub_domains = extract_num_sub_domains(form)
    # --- END DOMAIN DATA

    # A coarse profiling implementation TODO: Add counting of nodes, Add memory usage
    tic.end()
    if preprocess.enable_profiling:
        print tic

    # Store preprocessed form and return
    form_data.preprocessed_form = form
    form_data.preprocessed_form._is_preprocessed = True

    # Attach signatures to original and preprocessed forms TODO: Avoid this?
    ufl_assert(form_data.preprocessed_form._signature is None, "")
    form_data.preprocessed_form._signature = form_data.signature
    ufl_assert(original_form._signature is None, "")
    original_form._signature = form_data.signature

    return form_data
Exemple #9
0
def preprocess_expression(expr,
                          object_names=None,
                          common_cell=None,
                          element_mapping=None):
    """
    Preprocess raw input expression to obtain expression metadata,
    including a modified (preprocessed) expression more easily
    manipulated by expression compilers. The original expression
    is left untouched. Currently, the following transformations
    are made to the preprocessed form:

      expand_compounds    (side effect of calling expand_derivatives)
      expand_derivatives
      renumber arguments and coefficients and apply evt. element mapping
    """
    tic = Timer('preprocess_expression')

    # Check that we get an expression
    ufl_assert(isinstance(expr, Expr), "Expecting Expr.")

    # Object names is empty if not given
    object_names = object_names or {}

    # Element mapping is empty if not given
    element_mapping = element_mapping or {}

    # Create empty expression data
    expr_data = ExprData()

    # Store original expression
    expr_data.original_expr = expr

    # Store name of expr if given, otherwise empty string
    # such that automatic names can be assigned externally
    expr_data.name = object_names.get(id(expr),
                                      "")  # TODO: Or default to 'expr'?

    # Extract common cell
    common_cell = extract_common_cell(expr, common_cell)

    # TODO: Split out expand_compounds from expand_derivatives
    # Expand derivatives
    tic('expand_derivatives')
    expr = expand_derivatives(expr, common_cell.geometric_dimension())

    # Renumber indices
    #expr = renumber_indices(expr) # TODO: No longer needed?

    # Replace arguments and coefficients with new renumbered objects
    tic('extract_arguments_and_coefficients')
    original_arguments, original_coefficients = \
        extract_arguments_and_coefficients(expr)

    tic('build_element_mapping')
    element_mapping = build_element_mapping(element_mapping, common_cell,
                                            original_arguments,
                                            original_coefficients)

    tic('build_argument_replace_map')
    replace_map, renumbered_arguments, renumbered_coefficients = \
        build_argument_replace_map(original_arguments,
                                   original_coefficients,
                                   element_mapping)
    expr = replace(expr, replace_map)

    # Build mapping to original arguments and coefficients, which is
    # useful if the original arguments have data attached to them
    inv_replace_map = dict((w, v) for (v, w) in replace_map.iteritems())
    original_arguments = [inv_replace_map[v] for v in renumbered_arguments]
    original_coefficients = [
        inv_replace_map[w] for w in renumbered_coefficients
    ]

    # Store data extracted by preprocessing
    expr_data.arguments = renumbered_arguments  # TODO: Needed?
    expr_data.coefficients = renumbered_coefficients  # TODO: Needed?
    expr_data.original_arguments = original_arguments
    expr_data.original_coefficients = original_coefficients
    expr_data.renumbered_arguments = renumbered_arguments
    expr_data.renumbered_coefficients = renumbered_coefficients

    tic('replace')
    # Mappings from elements and functions (coefficients and arguments)
    # that reside in expr to objects with canonical numbering as well as
    # completed cells and elements
    expr_data.element_replace_map = element_mapping
    expr_data.function_replace_map = replace_map

    # Store signature of form
    tic('signature')
    expr_data.signature = compute_expression_signature(
        expr, expr_data.function_replace_map)

    # Store elements, sub elements and element map
    tic('extract_elements')
    expr_data.elements = tuple(
        f.element()
        for f in chain(renumbered_arguments, renumbered_coefficients))
    expr_data.unique_elements = unique_tuple(expr_data.elements)
    expr_data.sub_elements = extract_sub_elements(expr_data.elements)
    expr_data.unique_sub_elements = unique_tuple(expr_data.sub_elements)

    # Store element domains (NB! This is likely to change!)
    # FIXME: DOMAINS: What is a sensible way to store domains for a expr?
    expr_data.domains = tuple(
        sorted(set(element.domain() for element in expr_data.unique_elements)))

    # Store toplevel domains (NB! This is likely to change!)
    # FIXME: DOMAINS: What is a sensible way to store domains for a expr?
    expr_data.top_domains = tuple(
        sorted(set(domain.top_domain() for domain in expr_data.domains)))

    # Store common cell
    expr_data.cell = common_cell

    # Store data related to cell
    expr_data.geometric_dimension = expr_data.cell.geometric_dimension()
    expr_data.topological_dimension = expr_data.cell.topological_dimension()

    # Store some useful dimensions
    expr_data.rank = len(expr_data.arguments)  # TODO: Is this useful for expr?
    expr_data.num_coefficients = len(expr_data.coefficients)

    # Store argument names # TODO: Is this useful for expr?
    expr_data.argument_names = \
        [object_names.get(id(expr_data.original_arguments[i]), "v%d" % i)
         for i in range(expr_data.rank)]

    # Store coefficient names
    expr_data.coefficient_names = \
        [object_names.get(id(expr_data.original_coefficients[i]), "w%d" % i)
         for i in range(expr_data.num_coefficients)]

    # Store preprocessed expression
    expr_data.preprocessed_expr = expr

    tic.end()

    # A coarse profiling implementation
    # TODO: Add counting of nodes
    # TODO: Add memory usage
    if preprocess_expression.enable_profiling:
        print tic

    return expr_data
def preprocess(form, object_names=None, common_cell=None, element_mapping=None):
    """
    Preprocess raw input form to obtain form metadata, including a
    modified (preprocessed) form more easily manipulated by form
    compilers. The original form is left untouched. Currently, the
    following transformations are made to the preprocessed form:

      expand_compounds    (side effect of calling expand_derivatives)
      expand_derivatives
      renumber arguments and coefficients and apply evt. element mapping
    """
    tic = Timer('preprocess') # TODO: Reposition tic calls after refactoring.

    # Check that we get a form
    ufl_assert(isinstance(form, Form), "Expecting Form.")
    original_form = form

    # Object names is empty if not given
    object_names = object_names or {}

    # Element mapping is empty if not given
    element_mapping = element_mapping or {}

    # Create empty form data
    form_data = FormData()

    # Store copies of preprocess input data, for future validation if called again...
    form_data._input_object_names = dict(object_names)
    form_data._input_element_mapping = dict(element_mapping)
    #form_data._input_common_cell = no need to store this

    # Store name of form if given, otherwise empty string
    # such that automatic names can be assigned externally
    form_data.name = object_names.get(id(form), "")

    # Extract common cell
    common_cell = extract_common_cell(form, common_cell)

    # TODO: Split out expand_compounds from expand_derivatives
    # Expand derivatives
    tic('expand_derivatives')
    form = expand_derivatives(form, common_cell.geometric_dimension()) # EXPR

    # Propagate restrictions of interior facet integrals to the terminal nodes
    form = propagate_restrictions(form) # INTEGRAL, EXPR

    # --- BEGIN DOMAIN SPLITTING AND JOINING
    # Store domain metadata per domain type
    form_data.domain_data = extract_domain_data(form)

    # Split up integrals and group by domain type and domain id,
    # adding integrands with same domain and compiler data
    sub_integral_data = integral_dict_to_sub_integral_data(form.integral_groups())
    # TODO: Replace integral_data with this through ufl and ffc?
    if 0: print_sub_integral_data(sub_integral_data)

    # Reconstruct form from these integrals in a more canonical representation
    form = reconstruct_form_from_sub_integral_data(sub_integral_data, form_data.domain_data)

    # Represent in the way ffc expects TODO: Change ffc? Fine for now.
    form_data.integral_data = convert_sub_integral_data_to_integral_data(sub_integral_data)
    # --- END DOMAIN SPLITTING AND JOINING


    # --- BEGIN FUNCTION ANALYSIS
    # --- BEGIN SPLIT EXPR JOIN
    # Replace arguments and coefficients with new renumbered objects
    tic('extract_arguments_and_coefficients')
    original_arguments, original_coefficients = \
        extract_arguments_and_coefficients(form)

    tic('build_element_mapping')
    element_mapping = build_element_mapping(element_mapping,
                                            common_cell,
                                            original_arguments,
                                            original_coefficients)

    tic('build_argument_replace_map') # TODO: Remove renumbered ones?
    replace_map, renumbered_arguments, renumbered_coefficients = \
        build_argument_replace_map(original_arguments,
                                   original_coefficients,
                                   element_mapping)

    # Note: This is the earliest point signature can be computed

    # Build mapping to original arguments and coefficients, which is
    # useful if the original arguments have data attached to them
    inv_replace_map = dict((w,v) for (v,w) in replace_map.iteritems())
    original_arguments = [inv_replace_map[v] for v in renumbered_arguments]
    original_coefficients = [inv_replace_map[w] for w in renumbered_coefficients]

    # TODO: Build mapping from object to position instead? But we need mapped elements as well anyway.
    #argument_positions = { v: i }
    #coefficient_positions = { w: i }

    # Store data extracted by preprocessing
    form_data.original_arguments      = original_arguments
    form_data.original_coefficients   = original_coefficients
    # --- END SPLIT INTEGRAL JOIN

    # Mappings from elements and functions (coefficients and arguments)
    # that reside in form to objects with canonical numbering as well as
    # completed cells and elements
    # TODO: Create additional function mappings per integral,
    #       to have different counts? Depends on future UFC design.
    form_data.element_replace_map = element_mapping
    form_data.function_replace_map = replace_map

    # Store some useful dimensions
    form_data.rank = len(form_data.original_arguments)
    form_data.num_coefficients = len(form_data.original_coefficients)

    # Store argument names
    form_data.argument_names = \
        [object_names.get(id(form_data.original_arguments[i]), "v%d" % i)
         for i in range(form_data.rank)]

    # Store coefficient names
    form_data.coefficient_names = \
        [object_names.get(id(form_data.original_coefficients[i]), "w%d" % i)
         for i in range(form_data.num_coefficients)]
    # --- END FUNCTION ANALYSIS


    # --- BEGIN SIGNATURE COMPUTATION
    # TODO: Compute signatures of each INTEGRAL and EXPR as well, perhaps compute it hierarchially from integral_data?
    # Store signature of form
    tic('signature')
    # TODO: Remove signature() from Form, not safe to cache with a replacement map
    #form_data.signature = form.signature(form_data.function_replace_map)
    form_data.signature = compute_form_signature(form, form_data.function_replace_map)
    # --- END SIGNATURE COMPUTATION


    # --- BEGIN CONSISTENCY CHECKS
    # Check that we don't have a mixed linear/bilinear form or anything like that
    ufl_assert(len(compute_form_arities(form)) == 1, "All terms in form must have same rank.")
    # --- END CONSISTENCY CHECKS


    # --- BEGIN ELEMENT DATA
    # Store elements, sub elements and element map
    tic('extract_elements')
    form_data.argument_elements    = tuple(f.element() for f in renumbered_arguments)
    form_data.coefficient_elements = tuple(f.element() for f in renumbered_coefficients)
    form_data.elements             = form_data.argument_elements + form_data.coefficient_elements
    form_data.unique_elements      = unique_tuple(form_data.elements)
    form_data.sub_elements         = extract_sub_elements(form_data.elements)
    form_data.unique_sub_elements  = unique_tuple(form_data.sub_elements)
    # --- END ELEMENT DATA


    # --- BEGIN DOMAIN DATA
    # Store element domains (NB! This is likely to change!)
    # TODO: DOMAINS: What is a sensible way to store domains for a form?
    form_data.domains = tuple(sorted(set(element.domain()
                                         for element in form_data.unique_elements)))

    # Store toplevel domains (NB! This is likely to change!)
    # TODO: DOMAINS: What is a sensible way to store domains for a form?
    form_data.top_domains = tuple(sorted(set(domain.top_domain()
                                             for domain in form_data.domains)))

    # Store common cell
    form_data.cell = common_cell

    # Store data related to cell
    form_data.geometric_dimension = form_data.cell.geometric_dimension()
    form_data.topological_dimension = form_data.cell.topological_dimension()

    # Store number of domains for integral types
    form_data.num_sub_domains = extract_num_sub_domains(form)
    # --- END DOMAIN DATA


    # A coarse profiling implementation TODO: Add counting of nodes, Add memory usage
    tic.end()
    if preprocess.enable_profiling:
        print tic

    # Store preprocessed form and return
    form_data.preprocessed_form = form
    form_data.preprocessed_form._is_preprocessed = True

    # Attach signatures to original and preprocessed forms TODO: Avoid this?
    ufl_assert(form_data.preprocessed_form._signature is None, "")
    form_data.preprocessed_form._signature = form_data.signature
    ufl_assert(original_form._signature is None, "")
    original_form._signature = form_data.signature

    return form_data
def preprocess_expression(expr, object_names=None, common_cell=None, element_mapping=None):
    """
    Preprocess raw input expression to obtain expression metadata,
    including a modified (preprocessed) expression more easily
    manipulated by expression compilers. The original expression
    is left untouched. Currently, the following transformations
    are made to the preprocessed form:

      expand_compounds    (side effect of calling expand_derivatives)
      expand_derivatives
      renumber arguments and coefficients and apply evt. element mapping
    """
    tic = Timer('preprocess_expression')

    # Check that we get an expression
    ufl_assert(isinstance(expr, Expr), "Expecting Expr.")

    # Object names is empty if not given
    object_names = object_names or {}

    # Element mapping is empty if not given
    element_mapping = element_mapping or {}

    # Create empty expression data
    expr_data = ExprData()

    # Store original expression
    expr_data.original_expr = expr

    # Store name of expr if given, otherwise empty string
    # such that automatic names can be assigned externally
    expr_data.name = object_names.get(id(expr), "") # TODO: Or default to 'expr'?

    # Extract common cell
    common_cell = extract_common_cell(expr, common_cell)

    # TODO: Split out expand_compounds from expand_derivatives
    # Expand derivatives
    tic('expand_derivatives')
    expr = expand_derivatives(expr, common_cell.geometric_dimension())

    # Renumber indices
    #expr = renumber_indices(expr) # TODO: No longer needed?

    # Replace arguments and coefficients with new renumbered objects
    tic('extract_arguments_and_coefficients')
    original_arguments, original_coefficients = \
        extract_arguments_and_coefficients(expr)

    tic('build_element_mapping')
    element_mapping = build_element_mapping(element_mapping,
                                            common_cell,
                                            original_arguments,
                                            original_coefficients)

    tic('build_argument_replace_map')
    replace_map, renumbered_arguments, renumbered_coefficients = \
        build_argument_replace_map(original_arguments,
                                   original_coefficients,
                                   element_mapping)
    expr = replace(expr, replace_map)

    # Build mapping to original arguments and coefficients, which is
    # useful if the original arguments have data attached to them
    inv_replace_map = dict((w,v) for (v,w) in replace_map.iteritems())
    original_arguments = [inv_replace_map[v] for v in renumbered_arguments]
    original_coefficients = [inv_replace_map[w] for w in renumbered_coefficients]

    # Store data extracted by preprocessing
    expr_data.arguments               = renumbered_arguments    # TODO: Needed?
    expr_data.coefficients            = renumbered_coefficients # TODO: Needed?
    expr_data.original_arguments      = original_arguments
    expr_data.original_coefficients   = original_coefficients
    expr_data.renumbered_arguments    = renumbered_arguments
    expr_data.renumbered_coefficients = renumbered_coefficients

    tic('replace')
    # Mappings from elements and functions (coefficients and arguments)
    # that reside in expr to objects with canonical numbering as well as
    # completed cells and elements
    expr_data.element_replace_map = element_mapping
    expr_data.function_replace_map = replace_map

    # Store signature of form
    tic('signature')
    expr_data.signature = compute_expression_signature(expr, expr_data.function_replace_map)

    # Store elements, sub elements and element map
    tic('extract_elements')
    expr_data.elements            = tuple(f.element() for f in
                                          chain(renumbered_arguments,
                                                renumbered_coefficients))
    expr_data.unique_elements     = unique_tuple(expr_data.elements)
    expr_data.sub_elements        = extract_sub_elements(expr_data.elements)
    expr_data.unique_sub_elements = unique_tuple(expr_data.sub_elements)

    # Store element domains (NB! This is likely to change!)
    # FIXME: DOMAINS: What is a sensible way to store domains for a expr?
    expr_data.domains = tuple(sorted(set(element.domain()
                                         for element in expr_data.unique_elements)))

    # Store toplevel domains (NB! This is likely to change!)
    # FIXME: DOMAINS: What is a sensible way to store domains for a expr?
    expr_data.top_domains = tuple(sorted(set(domain.top_domain()
                                             for domain in expr_data.domains)))

    # Store common cell
    expr_data.cell = common_cell

    # Store data related to cell
    expr_data.geometric_dimension = expr_data.cell.geometric_dimension()
    expr_data.topological_dimension = expr_data.cell.topological_dimension()

    # Store some useful dimensions
    expr_data.rank = len(expr_data.arguments) # TODO: Is this useful for expr?
    expr_data.num_coefficients = len(expr_data.coefficients)

    # Store argument names # TODO: Is this useful for expr?
    expr_data.argument_names = \
        [object_names.get(id(expr_data.original_arguments[i]), "v%d" % i)
         for i in range(expr_data.rank)]

    # Store coefficient names
    expr_data.coefficient_names = \
        [object_names.get(id(expr_data.original_coefficients[i]), "w%d" % i)
         for i in range(expr_data.num_coefficients)]

    # Store preprocessed expression
    expr_data.preprocessed_expr = expr

    tic.end()

    # A coarse profiling implementation
    # TODO: Add counting of nodes
    # TODO: Add memory usage
    if preprocess_expression.enable_profiling:
        print tic

    return expr_data
Exemple #12
0
def heat(butcher_tableau):
    N = 4
    dt = Constant(1.0 / N)
    t = Constant(0.0)

    msh = UnitSquareMesh(N, N)
    deg = 2
    V = FunctionSpace(msh, "CG", deg)

    x, y = SpatialCoordinate(msh)

    uexact = t * (x + y)
    rhs = expand_derivatives(diff(uexact, t)) - div(grad(uexact))

    sols = []

    luparams = {
        "mat_type": "aij",
        "snes_type": "ksponly",
        "ksp_type": "preonly",
        "pc_type": "lu"
    }

    ranaLD = {
        "mat_type": "aij",
        "snes_type": "ksponly",
        "ksp_type": "gmres",
        "ksp_monitor": None,
        "pc_type": "python",
        "pc_python_type": "irksome.RanaLD",
        "aux": {
            "pc_type": "fieldsplit",
            "pc_fieldsplit_type": "multiplicative"
        }
    }
    per_field = {"ksp_type": "preonly", "pc_type": "gamg"}

    for s in range(butcher_tableau.num_stages):
        ranaLD["fieldsplit_%s" % (s, )] = per_field

    ranaDU = {
        "mat_type": "aij",
        "snes_type": "ksponly",
        "ksp_type": "gmres",
        "ksp_monitor": None,
        "pc_type": "python",
        "pc_python_type": "irksome.RanaDU",
        "aux": {
            "pc_type": "fieldsplit",
            "pc_fieldsplit_type": "multiplicative"
        }
    }

    for s in range(butcher_tableau.num_stages):
        ranaLD["fieldsplit_%s" % (s, )] = per_field

    params = [luparams, ranaLD, ranaDU]

    for solver_parameters in params:
        F, u, bc = Fubc(V, uexact, rhs)

        stepper = TimeStepper(F,
                              butcher_tableau,
                              t,
                              dt,
                              u,
                              bcs=bc,
                              solver_parameters=solver_parameters)
        stepper.advance()
        sols.append(u)

    errs = [errornorm(sols[0], uu) for uu in sols[1:]]
    return numpy.max(errs)
ns = ButcherTableau.num_stages
N = 64

msh = UnitSquareMesh(N, N)
V = FunctionSpace(msh, "CG", 1)
x, y = SpatialCoordinate(msh)

dt = Constant(10.0 / N)
t = Constant(0.0)

# This will give the exact solution at any time t.  We just have
# to t.assign(time_we_want)
uexact = exp(-t) * cos(pi * x) * sin(pi * y)

# MMS works on symbolic differentiation of true solution, not weak form
rhs = expand_derivatives(diff(uexact, t)) - div(grad(uexact))

u = interpolate(uexact, V)

# define the variational form once outside the loop
h = CellSize(msh)
n = FacetNormal(msh)
beta = Constant(100.0)
v = TestFunction(V)
F = (inner(Dt(u), v) * dx + inner(grad(u), grad(v)) * dx - inner(rhs, v) * dx -
     inner(dot(grad(u), n), v) * ds - inner(dot(grad(v), n), u - uexact) * ds +
     beta / h * inner(u - uexact, v) * ds)

params = {
    "mat_type": "aij",
    "snes_type": "ksponly",
Exemple #14
0
def assemble_mixed_system(*args, **kwargs):
    "Assemble mixed variational problem a == L or F == 0"
    assert (len(args) > 0)
    assert (isinstance(args[0], ufl.classes.Equation))

    # Extract arguments
    eq, u, bcs, J, tol, M, preconditioner, form_compiler_parameters, solver_parameters\
        = _extract_args(*args, **kwargs)

    if u.num_sub_spaces() > 0:

        if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):
            # Extract blocks from the variational formulation
            eq_lhs_forms = extract_blocks(eq.lhs)
            eq_rhs_forms = extract_blocks(eq.rhs)

            # Create problem
            problem = MixedLinearVariationalProblem(
                eq_lhs_forms,
                eq_rhs_forms,
                u._functions,
                bcs,
                form_compiler_parameters=form_compiler_parameters)

            # Create solver and call solve
            solver = MixedLinearVariationalSolver(problem)
            system = solver.assemble_system()
            return system
        else:
            raise RuntimeError(
                "assemble_mixed_system is not available for non-linear problems yet"
            )
            # Extract blocks from the variational formulation
            eq_lhs_forms = extract_blocks(eq.lhs)

            if J is None:
                cpp.log.info(
                    "No Jacobian form specified for nonlinear variational problem."
                )
                cpp.log.info(
                    "Differentiating residual form F to obtain Jacobian J = F'."
                )
                # Give the list of jacobian for each eq_lhs
                Js = []
                for Fi in eq_lhs_forms:
                    for uj in u._functions:
                        derivative = formmanipulations.derivative(Fi, uj)
                        derivative = expand_derivatives(derivative)
                        Js.append(derivative)

            problem = MixedNonlinearVariationalProblem(
                eq_lhs_forms,
                u._functions,
                bcs,
                Js,
                form_compiler_parameters=form_compiler_parameters)
            # Create solver and call solve
            solver = MixedNonlinearVariationalSolver(problem)
            # system = solver.assemble_system()
            # return system
    else:
        print(
            "Error : You're trying to use assemble_mixed_system on a single domain problem."
        )
Exemple #15
0
def _solve_varproblem(*args, **kwargs):
    "Solve variational problem a == L or F == 0"
    # Extract arguments
    eq, u, bcs, J, tol, M, preconditioner, form_compiler_parameters, solver_parameters\
        = _extract_args(*args, **kwargs)

    # Solve linear variational problem
    if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):

        if u._functions is not None:
            # Extract blocks from the variational formulation
            eq_lhs_forms = extract_blocks(eq.lhs)
            eq_rhs_forms = extract_blocks(eq.rhs)

            # Create problem
            problem = MixedLinearVariationalProblem(
                eq_lhs_forms,
                eq_rhs_forms,
                u._functions,
                bcs,
                form_compiler_parameters=form_compiler_parameters)

            # Create solver and call solve
            solver = MixedLinearVariationalSolver(problem)
            solver.parameters.update(solver_parameters)
            solver.solve()

        else:
            # Create problem
            problem = LinearVariationalProblem(
                eq.lhs,
                eq.rhs,
                u,
                bcs,
                form_compiler_parameters=form_compiler_parameters)
            # Create solver and call solve
            solver = LinearVariationalSolver(problem)
            solver.parameters.update(solver_parameters)
            solver.solve()

    # Solve nonlinear variational problem
    else:

        if u._functions is not None:
            # Extract blocks from the variational formulation
            eq_lhs_forms = extract_blocks(eq.lhs)

            if J is None:
                cpp.log.info(
                    "No Jacobian form specified for nonlinear mixed variational problem."
                )
                cpp.log.info(
                    "Differentiating residual form F to obtain Jacobian J = F'."
                )
                # Give the list of jacobian for each eq_lhs
                Js = []
                for Fi in eq_lhs_forms:
                    for uj in u._functions:
                        derivative = formmanipulations.derivative(Fi, uj)
                        derivative = expand_derivatives(derivative)
                        Js.append(derivative)

            problem = MixedNonlinearVariationalProblem(
                eq_lhs_forms,
                u._functions,
                bcs,
                Js,
                form_compiler_parameters=form_compiler_parameters)
            # Create solver and call solve
            solver = MixedNonlinearVariationalSolver(problem)
            solver.parameters.update(solver_parameters)
            solver.solve()
        else:
            # Create Jacobian if missing
            if J is None:
                cpp.log.info(
                    "No Jacobian form specified for nonlinear variational problem."
                )
                cpp.log.info(
                    "Differentiating residual form F to obtain Jacobian J = F'."
                )
                F = eq.lhs
                J = formmanipulations.derivative(F, u)

            # Create problem
            problem = NonlinearVariationalProblem(
                eq.lhs,
                u,
                bcs,
                J,
                form_compiler_parameters=form_compiler_parameters)

            # Create solver and call solve
            solver = NonlinearVariationalSolver(problem)
            solver.parameters.update(solver_parameters)
            solver.solve()