Exemple #1
0
 def test_runkGTM(self):
     gtm = ugtm.runkGTM(data=self.data, k=self.k,
                        doPCA=True, doKernel=True)
     self.assertEqual(gtm.converged, True)
     self.assertEqual(gtm.matR.shape, (self.n_individuals, self.n_nodes))
     self.assertAlmostEqual(sum(gtm.matR[0, :]), 1.0)
     self.assertEqual(gtm.matMeans.shape, (self.n_individuals, 2))
     self.assertEqual(gtm.matModes.shape, (self.n_individuals, 2))
Exemple #2
0
 def test_runWorkflow(self):
     train = np.random.randn(20, 10)
     test = np.random.randn(20, 10)
     labels = np.random.choice(["class1", "class2"], size=20)
     activity = np.random.randn(20)
     gtm = ugtm.runGTM(train)
     gtm.write("tests/output_tests/testout1")
     gtm_coordinates = gtm.matMeans
     gtm_modes = gtm.matModes
     gtm_responsibilities = gtm.matR
     gtm.plot_multipanel(output="tests/output_tests/testout2",
                         labels=labels,
                         discrete=True,
                         pointsize=20)
     gtm.plot_multipanel(output="tests/output_tests/testout3",
                         labels=activity,
                         discrete=False,
                         pointsize=20)
     gtm.plot_multipanel(output="tests/output_tests/testout4",
                         labels=labels,
                         discrete=True,
                         pointsize=20,
                         do_interpolate=False)
     gtm.plot_multipanel(output="tests/output_tests/testout5",
                         labels=activity,
                         discrete=False,
                         pointsize=20,
                         do_interpolate=False)
     gtm.plot(output="tests/output_tests/testout6", pointsize=20)
     gtm.plot(output="tests/output_tests/testout7",
              labels=labels,
              discrete=True,
              pointsize=20)
     gtm.plot(output="tests/output_tests/testout8",
              labels=activity,
              discrete=False,
              pointsize=20)
     gtm.plot_html(output="tests/output_tests/testout9", pointsize=20)
     gtm.plot_html(output="tests/output_tests/testout10",
                   labels=activity,
                   discrete=False,
                   pointsize=20)
     gtm.plot_html(output="tests/output_tests/testout11",
                   labels=labels,
                   discrete=True,
                   pointsize=20)
     gtm.plot_html(output="tests/output_tests/testout12",
                   labels=activity,
                   discrete=False,
                   pointsize=20,
                   do_interpolate=False,
                   ids=labels)
     gtm.plot_html(output="tests/output_tests/testout13",
                   labels=labels,
                   discrete=True,
                   pointsize=20,
                   do_interpolate=False)
     transformed = ugtm.transform(optimizedModel=gtm,
                                  train=train,
                                  test=test)
     transformed.plot_html(output="tests/output_tests/testout14",
                           pointsize=20)
     transformed.plot(output="tests/output_tests/testout15", pointsize=20)
     gtm.plot_html_projection(output="tests/output_tests/testout16",
                              projections=transformed,
                              labels=labels,
                              discrete=True,
                              pointsize=20)
     predicted_labels = ugtm.GTC(train=train, test=test, labels=labels)
     predicted_model = ugtm.advancedGTC(train=train,
                                        test=test,
                                        labels=labels)
     predicted_model = ugtm.advancedGTC(train=train,
                                        test=test,
                                        labels=labels,
                                        doPCA=True,
                                        n_components=-1)
     ugtm.printClassPredictions(predicted_model,
                                "tests/output_tests/testout17")
     predicted = ugtm.GTR(train=train, test=test, labels=activity)
     predicted = ugtm.GTC(train=train, test=test, labels=labels)
     ugtm.crossvalidateGTC(data=train,
                           labels=labels,
                           s=1,
                           regul=1,
                           n_repetitions=10,
                           n_folds=5)
     ugtm.crossvalidateGTR(data=train, labels=activity, s=1, regul=1)
     ugtm.crossvalidatePCAC(data=train, labels=labels, n_neighbors=7)
     ugtm.crossvalidateSVCrbf(data=train, labels=labels, C=1, gamma=1)
     ugtm.crossvalidateSVCrbf(data=train, labels=labels, C=1)
     ugtm.crossvalidateSVR(data=train, labels=activity, C=1, epsilon=1)
     ugtm.crossvalidatePCAR(data=train, labels=activity, n_neighbors=7)
     gtm = ugtm.runkGTM(train, doKernel=True, kernel="linear")
Exemple #3
0
                      prior=args.prior,
                      do_interpolate=args.interpolate)
        exit

    # if it's for kGTM visualization
    elif args.model == 'kGTM':
        # kGTM embedding
        print("k:%s, m:%s, l:%s, s:%s" % (k, m, l, s))
        matK = ugtm.chooseKernel(data, args.kernel)
        start = time.time()
        kgtm = ugtm.runkGTM(data=matK,
                            k=k,
                            m=m,
                            s=s,
                            l=l,
                            niter=niter,
                            doKernel=False,
                            maxdim=maxdim,
                            doPCA=False,
                            missing=args.missing,
                            missing_strategy=args.missing_strategy,
                            random_state=args.random_state)
        end = time.time()
        elapsed = end - start
        print("time taken for kGTM: ", elapsed)
        # make pdf
        np.savetxt(args.output + "_matmeans.csv", kgtm.matMeans, delimiter=',')
        kgtm.plot_multipanel(labels=labels,
                             output=args.output,
                             discrete=discrete,
                             cname=args.cname,
                             pointsize=args.pointsize,