Exemple #1
0
def nn_descent_internal_high_memory(
    current_graph,
    data,
    n_neighbors,
    rng_state,
    tried,
    max_candidates=50,
    dist=dist.euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    verbose=False,
):
    n_vertices = data.shape[0]

    for n in range(n_iters):
        with numba.objmode():
            # Call into object mode to temporarily sleep (and thus release GIL)
            logging.info("(obj mode) high mem nn descent iter.")
            time.sleep(0.05)

        if verbose:
            print("\t", n, " / ", n_iters)

        (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates(
            current_graph, n_vertices, n_neighbors, max_candidates, rng_state, rho
        )

        c = 0
        for i in range(n_vertices):
            for j in range(max_candidates):
                p = int(new_candidate_neighbors[0, i, j])
                if p < 0:
                    continue
                for k in range(j, max_candidates):
                    q = int(new_candidate_neighbors[0, i, k])
                    if q < 0 or (p, q) in tried:
                        continue

                    d = dist(data[p], data[q])
                    c += unchecked_heap_push(current_graph, p, d, q, 1)
                    tried.add((p, q))
                    if p != q:
                        c += unchecked_heap_push(current_graph, q, d, p, 1)
                        tried.add((q, p))

                for k in range(max_candidates):
                    q = int(old_candidate_neighbors[0, i, k])
                    if q < 0 or (p, q) in tried:
                        continue

                    d = dist(data[p], data[q])
                    c += unchecked_heap_push(current_graph, p, d, q, 1)
                    tried.add((p, q))
                    if p != q:
                        c += unchecked_heap_push(current_graph, q, d, p, 1)
                        tried.add((q, p))

        if c <= delta * n_neighbors * data.shape[0]:
            return
Exemple #2
0
def nn_descent_internal_high_memory(
    current_graph,
    data,
    n_neighbors,
    rng_state,
    tried,
    max_candidates=50,
    dist=dist.euclidean,
    dist_args=(),
    n_iters=10,
    delta=0.001,
    rho=0.5,
    verbose=False,
):
    n_vertices = data.shape[0]

    for n in range(n_iters):
        if verbose:
            print("\t", n, " / ", n_iters)

        (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates(
            current_graph, n_vertices, n_neighbors, max_candidates, rng_state, rho
        )

        c = 0
        for i in range(n_vertices):
            for j in range(max_candidates):
                p = int(new_candidate_neighbors[0, i, j])
                if p < 0:
                    continue
                for k in range(j, max_candidates):
                    q = int(new_candidate_neighbors[0, i, k])
                    if q < 0 or (p, q) in tried:
                        continue

                    d = dist(data[p], data[q], *dist_args)
                    c += unchecked_heap_push(current_graph, p, d, q, 1)
                    tried.add((p, q))
                    if p != q:
                        c += unchecked_heap_push(current_graph, q, d, p, 1)
                        tried.add((q, p))

                for k in range(max_candidates):
                    q = int(old_candidate_neighbors[0, i, k])
                    if q < 0 or (p, q) in tried:
                        continue

                    d = dist(data[p], data[q], *dist_args)
                    c += unchecked_heap_push(current_graph, p, d, q, 1)
                    tried.add((p, q))
                    if p != q:
                        c += unchecked_heap_push(current_graph, q, d, p, 1)
                        tried.add((q, p))

        if c <= delta * n_neighbors * data.shape[0]:
            return
def sparse_nn_descent_internal_low_memory(
    current_graph,
    inds,
    indptr,
    data,
    n_vertices,
    n_neighbors,
    rng_state,
    max_candidates=50,
    sparse_dist=umap.sparse.sparse_euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    verbose=False,
):
    for n in range(n_iters):
        if verbose:
            print("\t", n, " / ", n_iters)

        (new_candidate_neighbors,
         old_candidate_neighbors) = new_build_candidates(
             current_graph, n_vertices, n_neighbors, max_candidates, rng_state,
             rho)

        c = 0
        for i in range(n_vertices):
            for j in range(max_candidates):
                p = int(new_candidate_neighbors[0, i, j])
                if p < 0:
                    continue
                for k in range(j, max_candidates):
                    q = int(new_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    from_inds = inds[indptr[p]:indptr[p + 1]]
                    from_data = data[indptr[p]:indptr[p + 1]]

                    to_inds = inds[indptr[q]:indptr[q + 1]]
                    to_data = data[indptr[q]:indptr[q + 1]]

                    d = sparse_dist(from_inds, from_data, to_inds, to_data)

                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

                for k in range(max_candidates):
                    q = int(old_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    from_inds = inds[indptr[p]:indptr[p + 1]]
                    from_data = data[indptr[p]:indptr[p + 1]]

                    to_inds = inds[indptr[q]:indptr[q + 1]]
                    to_data = data[indptr[q]:indptr[q + 1]]

                    d = sparse_dist(from_inds, from_data, to_inds, to_data)

                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

        if c <= delta * n_neighbors * n_vertices:
            return