def test_rest(x, y): print('Random under-sampling') US = UnderSampler(verbose=verbose) usx, usy = US.fit_transform(x, y) print('Tomek links') TL = TomekLinks(verbose=verbose) tlx, tly = TL.fit_transform(x, y) print('Clustering centroids') CC = ClusterCentroids(verbose=verbose) ccx, ccy = CC.fit_transform(x, y) print('NearMiss-1') NM1 = NearMiss(version=1, verbose=verbose) nm1x, nm1y = NM1.fit_transform(x, y) print('NearMiss-2') NM2 = NearMiss(version=2, verbose=verbose) nm2x, nm2y = NM2.fit_transform(x, y) print('NearMiss-3') NM3 = NearMiss(version=3, verbose=verbose) nm3x, nm3y = NM3.fit_transform(x, y) print('Neighboorhood Cleaning Rule') NCR = NeighbourhoodCleaningRule(verbose=verbose) ncrx, ncry = NCR.fit_transform(x, y) print('Random over-sampling') OS = OverSampler(verbose=verbose) ox, oy = OS.fit_transform(x, y) print('SMOTE Tomek links') STK = SMOTETomek(verbose=verbose) stkx, stky = STK.fit_transform(x, y) print('SMOTE ENN') SENN = SMOTEENN(verbose=verbose) sennx, senny = SENN.fit_transform(x, y) print('EasyEnsemble') EE = EasyEnsemble(verbose=verbose) eex, eey = EE.fit_transform(x, y)
def apply_sampling(X_data, Y_data, sampling, n_states, maxlen): ratio = float(np.count_nonzero(Y_data == 1)) / \ float(np.count_nonzero(Y_data == 0)) X_data = np.reshape(X_data, (len(X_data), n_states * maxlen)) # 'Random over-sampling' if sampling == 'OverSampler': OS = OverSampler(ratio=ratio, verbose=True) # 'Random under-sampling' elif sampling == 'UnderSampler': OS = UnderSampler(verbose=True) # 'Tomek under-sampling' elif sampling == 'TomekLinks': OS = TomekLinks(verbose=True) # Oversampling elif sampling == 'SMOTE': OS = SMOTE(ratio=1, verbose=True, kind='regular') # Oversampling - Undersampling elif sampling == 'SMOTETomek': OS = SMOTETomek(ratio=ratio, verbose=True) # Undersampling elif sampling == 'OneSidedSelection': OS = OneSidedSelection(verbose=True) # Undersampling elif sampling == 'CondensedNearestNeighbour': OS = CondensedNearestNeighbour(verbose=True) # Undersampling elif sampling == 'NearMiss': OS = NearMiss(version=1, verbose=True) # Undersampling elif sampling == 'NeighbourhoodCleaningRule': OS = NeighbourhoodCleaningRule(verbose=True) # ERROR: WRONG SAMPLER, TERMINATE else: print('Wrong sampling variable you have set... Exiting...') sys.exit() # print('shape ' + str(X.shape)) X_data, Y_data = OS.fit_transform(X_data, Y_data) return X_data, Y_data
def _sample_values(X, y, method=None, ratio=1, verbose=False): """Perform any kind of sampling(over and under). Parameters ---------- X : array, shape = [n_samples, n_features] Data. y : array, shape = [n_samples] Target. method : str, optional default: None Over or under smapling method. ratio: float Unbalanced class ratio. Returns ------- X, y : tuple Sampled X and y. """ if method == 'SMOTE': sampler = SMOTE(ratio=ratio, verbose=verbose) elif method == 'SMOTEENN': ratio = ratio * 0.3 sampler = SMOTEENN(ratio=ratio, verbose=verbose) elif method == 'random_over_sample': sampler = OverSampler(ratio=ratio, verbose=verbose) elif method == 'random_under_sample': sampler = UnderSampler(verbose=verbose) elif method == 'TomekLinks': sampler = TomekLinks(verbose=verbose) return sampler.fit_transform(X, y)
def tomek_links(self): TL = TomekLinks(verbose=self.verbose) tlx, tly = TL.fit_transform(self.x, self.y) print "TomekLins Transformed" return tlx, tly
# Plot the two classes plt.scatter(x_vis[y==0, 0], x_vis[y==0, 1], label="Class #0", alpha=0.5, edgecolor=almost_black, facecolor='red', linewidth=0.15) plt.scatter(x_vis[y==1, 0], x_vis[y==1, 1], label="Class #1", alpha=0.5, edgecolor=almost_black, facecolor='blue', linewidth=0.15) plt.legend() plt.show() # Generate the new dataset using under-sampling method verbose = False # 'Random under-sampling' US = UnderSampler(verbose=verbose) usx, usy = US.fit_transform(x, y) # 'Tomek links' TL = TomekLinks(verbose=verbose) tlx, tly = TL.fit_transform(x, y) # 'Clustering centroids' CC = ClusterCentroids(verbose=verbose) ccx, ccy = CC.fit_transform(x, y) # 'NearMiss-1' NM1 = NearMiss(version=1, verbose=verbose) nm1x, nm1y = NM1.fit_transform(x, y) # 'NearMiss-2' NM2 = NearMiss(version=2, verbose=verbose) nm2x, nm2y = NM2.fit_transform(x, y) # 'NearMiss-3' NM3 = NearMiss(version=3, verbose=verbose) nm3x, nm3y = NM3.fit_transform(x, y) # 'Condensed Nearest Neighbour' CNN = CondensedNearestNeighbour(size_ngh=51, n_seeds_S=51, verbose=verbose)