# work our way backwards through the time series, randomly sampling confidence leve U = [0] * T_idx # a place to store this replicate U[-1] = U_T impossibleFlag = False for t in tV: # work our way backwards alpha = uniform.rvs() S0 = S[t - 1] S1 = S[t] U1 = U[t] d0 = d[t - 1] U[t - 1], impossibleFlag = find_U0_bnd(alpha, S0, S1, U1, d0, impossibleFlag, omega, biasedurn) # calculate X_t from U_t N = S[0] + E[0] + U[0] # assumes X(0) = 0 X = [N - EE - SS - UU for EE, SS, UU in zip(E, S, U)] # append results UM.append(U) XM.append(X) # calculate statistics on sample # ---
U = [0] * T_idx # a place to store this replicate U[-1] = U_T impossibleFlag = False for t in tV: S0 = S[t - 1] S1 = S[t] U1 = U[t] d0 = d[t - 1] # if type_of_ci == 'midp': alpha = stats.uniform.rvs() min_poss_U0 = max((min_poss_UV[t - 1], U1 + d0)) U[t - 1], impossibleFlag = find_U0_bnd(alpha, S0, S1, U1, d0, impossibleFlag, None, None) # store this example UV.append(U) # plot them # --- # plot the simulation as "true" values plt.plot(S_orig, 'green', lw=1, label=r'$S_t$') plt.plot(E_orig, 'red', lw=1, label=r'$E_t$') plt.plot(X_orig, 'blue', lw=1, label=r'$X_t$') # plot each of the examples for i, U in enumerate(UV):