Exemple #1
0
def create_model(device, type ='vgg16'):
    assert type == 'vgg16' or type == 'resnet101'
    if type == 'vgg16':
        model = UNet16(pretrained=True)
    elif type == 'resnet101':
        model = UNetResNet(pretrained=True, encoder_depth=101, num_classes=1)
    else:
        assert False
    model.eval()
    return model.to(device)
Exemple #2
0
def load_unet_resnet_34(model_path):
    model = UNetResNet(pretrained=True, encoder_depth=34, num_classes=1)
    checkpoint = torch.load(model_path)
    if 'model' in checkpoint:
        model.load_state_dict(checkpoint['model'])
    elif 'state_dict' in checkpoint:
        model.load_state_dict(checkpoint['check_point'])
    else:
        raise Exception('undefind model format')

    model.cuda()
    model.eval()

    return model
Exemple #3
0
def create_model(device, type='vgg16'):
    assert type == 'vgg16' or type == 'resnet101'
    if type == 'vgg16':
        print('create vgg16 model')
        model = UNet16(pretrained=True)
    elif type == 'resnet101':
        encoder_depth = 101
        num_classes = 1
        print('create resnet101 model')
        model = UNetResNet(encoder_depth=encoder_depth,
                           num_classes=num_classes,
                           pretrained=True)
    else:
        assert False
    model.eval()
    return model.to(device)
def create_model(device, type ='vgg16'):
    if type == 'vgg16':
        print('create vgg16 model')
        model = UNet16(pretrained=True)
    elif type == 'vgg16_bn':
        print('create vgg16_bn model')
        model = UNet16_bn(pretrained=True)
    elif type == 'vgg16_bn_do':
        print('create vgg16_bn_do model')
        model = UNet16_bn_do(pretrained=True)
    elif type == 'vgg16_fullbn_do':
        print('create vgg16_fullbn_do model')
        model = UNet16_fullbn_do(pretrained=True)
    elif type == 'resnet101':
        encoder_depth = 101
        num_classes = 1
        print('create resnet101 model')
        model = UNetResNet(encoder_depth=encoder_depth, num_classes=num_classes, pretrained=True)
    elif type == 'resnet34':
        encoder_depth = 34
        num_classes = 1
        print('create resnet34 model')
        model = UNetResNet(encoder_depth=encoder_depth, num_classes=num_classes, pretrained=True)
    elif type == 'unet+++':
        model = UNet_3Plus()
        print('create U-Net+++ model')
    elif type =='unet++':
        model = UNet_2Plus()
        print('create U-Net++ model')
    else:
        assert False
    model.eval()
    return model.to(device)