Exemple #1
0
def main():
    stock_sql = StockSQL()
    if VERSION == 1:
        model = load_dnn_model_v1(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v1(stock_sql, model)
    elif VERSION == 2:
        model = load_dnn_model_v2(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v2(stock_sql, model)
    elif VERSION == 3:
        model = load_dnn_model_v3(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v3(stock_sql, model)
    elif VERSION == 4:
        model = load_dnn_model_v4(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v4(stock_sql, model)
    elif VERSION == 5:
        model = load_dnn_model_v5(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v5(stock_sql, model)
    else:
        model = load_dnn_model_v6(weight_path=WEIGHT_PATH)
        ret = load_and_pred_data_v6(stock_sql, model)

    print("上傳資料中.....")
    # 上傳預測結果
    stock_sql.write_multi_line("INSERT INTO `AI__分析a` VALUES (%s,%s,%s,%s,%s)",
                               ret)
    print("Finish")
Exemple #2
0
        # Create X Input 3
        x_data_3 = np.array(values)[:, 13:16].astype(np.float)
        x_data_3 = (x_data_3 - mean_dict_3[stock_id]) / std_dict_3[stock_id]

        # Create X Input 4
        x_data_4 = np.array(values)[:, 16:20].astype(np.float)
        x_data_4 = (x_data_4 - mean_dict_4[stock_id]) / std_dict_4[stock_id]

        # Create X Input 5
        x_data_5 = np.array(values)[:, 20:].astype(np.float)
        x_data_5 = (x_data_5 - mean_dict_5[stock_id]) / std_dict_5[stock_id]

        # Predict
        outputs = model.predict((x_data_1, x_data_2, x_data_3, x_data_4, x_data_5))

        # Save predict result
        dates = [str(v[0]) for v in values]
        ret += package_outputs(stock_id, dates, outputs, version)
        print('Preparing Stock: {}, Number: {}'.format(stock_id, len(values)))
    return ret


if __name__ == '__main__':
    from units.sql import StockSQL

    # 連線SQL資料庫
    stock_sql_test = StockSQL()

    # 載入資料
    load_data(stock_sql_test, load_dir='1723')
Exemple #3
0
from datetime import datetime
from flask import Flask, render_template
from flask_bootstrap import Bootstrap
from flask_moment import Moment
from units.draw import *
from units.sql import StockSQL
from flask_wtf import FlaskForm
from wtforms import SubmitField, DateField, SelectMultipleField, IntegerField, StringField
from wtforms.validators import DataRequired

app = Flask(__name__)
app.config['SECRET_KEY'] = 'woodylin7158517'

bootstrap = Bootstrap(app)
moment = Moment(app)
stock_sql = StockSQL()


class StocksForm(FlaskForm):
    start_date = DateField('開始時間', id='datepick', validators=[DataRequired()])
    end_date = DateField('結束時間', validators=[DataRequired()])
    stock_id = IntegerField('股票代號', validators=[DataRequired()])
    submit = SubmitField('送出')


@app.errorhandler(404)
def page_not_found(e):
    return render_template('404.html'), 404


@app.errorhandler(500)
Exemple #4
0
def main():
    # 初始話參數
    if TEST_MODE:
        today = 'test'
    else:
        dt = datetime.datetime.today()
        today = "{}-{}-{}".format(dt.year, dt.month, dt.day)
    model_dir = os.path.join(
        'outputs', '{}-{}-version{}.h5'.format(today, TRAINING_DATA, VERSION))
    log_dir = os.path.join(
        'logs', '{}-{}-version{}'.format(today, TRAINING_DATA, VERSION))
    if os.path.isdir(log_dir) or os.path.isfile(model_dir):
        print("檔案已經存在")
        exit()

    # 連線SQL資料庫
    stock_sql = StockSQL()

    # 載入資料 & 創建Model
    if VERSION == 1:
        x_train, y_train, x_val, y_val = load_data_v1(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v1()
    elif VERSION == 2:
        x_train, y_train, x_val, y_val = load_data_v2(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v2()
    elif VERSION == 3:
        x_train, y_train, x_val, y_val = load_data_v3(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v3()
    elif VERSION == 4:
        x_train, y_train, x_val, y_val = load_data_v4(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v4()
    elif VERSION == 5:
        x_train, y_train, x_val, y_val = load_data_v5(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v5()
    elif VERSION == 6:
        x_train, y_train, x_val, y_val = load_data_v6(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v6()
    else:
        x_train, y_train, x_val, y_val = load_data_v7(stock_sql,
                                                      load_dir=TRAINING_DATA)
        model = load_dnn_model_v7()

    # Training
    model.compile(
        tf.keras.optimizers.Adam(0.001),
        loss=binary_focal_loss,
        metrics=[keras.metrics.BinaryAccuracy(),
                 OverKill(),
                 UnderKill()],
        run_eagerly=True)

    model_tcbk = keras.callbacks.TensorBoard(log_dir=log_dir)
    model_mckp = SaveBastOverKillAddUnderKillModel(model_dir)
    model_acbk = OverKillAddUnderKill(log_dir)
    model.fit(x_train,
              y_train,
              batch_size=64,
              epochs=50,
              validation_data=(x_val, y_val),
              callbacks=[model_tcbk, model_mckp, model_acbk])