Exemple #1
0
class Rlbot_env_loco(gym.Env):
    def __init__(
        self,
        setting_file,
        test,  # if True will use the test_xy as start point
        timeDependent,
        action_type,  # 'discrete', 'continuous'
        observation_type,  # 'color', 'depth', 'rgbd'
        reward_type  # distance, bbox, bbox_distance,
    ):

        self.show = False
        self.collision = False
        self.timeDependent = timeDependent
        self.target = None
        # self.dis2target_now= 100
        # self.isTargetChanged = False

        print("Reading setting file: ", setting_file)
        self.test = test
        self.action_type = action_type
        self.observation_type = observation_type
        self.reward_type = reward_type
        assert self.action_type == 'discrete' or self.action_type == 'continuous'
        assert self.observation_type == 'depth'
        setting = self.load_env_setting(setting_file)

        # connect UnrealCV
        self.unrealcv = UnrealCv(9000, self.cam_id, self.env_ip,
                                 self.message_handler)

        print("Camera_id: ", self.cam_id)
        print("Environment ip: ", self.env_ip)
        print("Observation type: ", observation_type)
        print("action_type: ", action_type)
        print("Reward type: ", reward_type)
        print("timeDependent: ", str(self.timeDependent))

        self.unrealcv.notify_connection()

        self.count_steps = 0

        # action
        if self.action_type == 'discrete':
            self.action_space = spaces.Discrete(len(self.discrete_angular))
        elif self.action_type == 'continuous':
            self.action_space = spaces.Box(
                low=np.array(self.continous_actions['low']),
                high=np.array(self.continous_actions['high']))

        # get start position
        self.startPoint = self.unrealcv.get_pose()
        self.unrealcv.get_target_point()

        while (self.target == None):
            time.sleep(0.5)

        # for reset point generation
        self.trajectory = []
        self.start_id = 0

    def _step(self, actions):
        info = dict(
            Collision=False,
            Arrival=False,
            Done=False,
            Maxstep=False,
            Reward=0.0,
            Action=actions,
            Pose=[],
            Trajectory=self.trajectory,
            Steps=self.count_steps,
            Target=[],
            Distance=0.0,
            Direction=0.0,
            Color=None,
            Depth=None,
        )

        action_angular = actions[0]
        ########################### first time ignore ###########################
        if action_angular == -8:
            if self.observation_type == 'depth':
                state = info['Depth'] = self.unrealcv.read_depth_npy()

            resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
            resized_state = np.expand_dims(resized_state, axis=2)

            info['Done'] = True
            return resized_state, 0, info['Done'], info
        ########################### return state immediately ###########################
        if action_angular == -9:
            if self.observation_type == 'depth':
                state = info['Depth'] = self.unrealcv.read_depth_npy()

            resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
            resized_state = np.expand_dims(resized_state, axis=2)
            return resized_state, 0, False, info
        ############################ disconnect UE ###########################
        elif action_angular == -99:
            if self.observation_type == 'depth':
                state = info['Depth'] = self.unrealcv.read_depth_npy()

            resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
            resized_state = np.expand_dims(resized_state, axis=2)
            self.unreadcv.notify_disconnection()
            return resized_state, 0, False, info

        ############################## Start ###################################

        if self.action_type == 'discrete':
            angle = self.discrete_angular[action_angular]
        else:
            angle = None

        info['Done'] = False

        # take action
        distance_travelled = self.unrealcv.move(10, angle, self.timeDependent)

        info['Pose'] = self.unrealcv.get_pose()
        # info['Distance'] = self.get_distance(info['Pose'][:3],self.targets_pos)
        if self.reward_type == 'distance':
            # info['Reward'] = self.reward_distance(info['Pose'])
            # info['Reward'] = distance_travelled / 100
            if angle == 0:
                info['Reward'] = 0.01
            else:
                info['Reward'] = 0

        # info['Direction'] = self.get_direction (info['Pose'],self.targets_pos)
        info['Collision'] = self.isCollided()

        # info['Arrival'] = self.unrealcv.get_arrival()
        # self.unrealcv.reset_arrival()

        if info['Collision']:
            info['Reward'] = -1
            info['Done'] = True

        #print ("R: ", str(round(info['Reward'], 3)), " D: ", str(round(info['Distance'], 3)), " A: ", str(round(info['Direction'], 3)))
        self.count_steps += 1

        # limit the max steps of every episode
        if self.count_steps > self.max_steps:
            info['Done'] = True
            info['Maxstep'] = True
            print '@@@ Reach Max Steps'

        # save the trajectory
        self.trajectory.append(info['Pose'])
        info['Trajectory'] = self.trajectory

        # update observation
        if self.observation_type == 'depth':
            state = info['Depth'] = self.unrealcv.read_depth_npy()

        if self.show:
            state = cv2.resize(state, (432, 243))
            cv2.imshow('state', state / np.max(state))
            cv2.waitKey(1)

        resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
        resized_state = np.expand_dims(resized_state, axis=2)
        # return np.array([state, np.array([info['Distance']])]), info['Reward'], info['Done'], info

        return resized_state, info['Reward'], info['Done'], info

    def _reset(self, ):
        self.unrealcv.reset_env()

        if self.test:
            current_pose = self.reset_from_testpoint()
        else:
            # current_pose = self.unrealcv.get_pose()
            current_pose = self.reset_from_startPoint()

        if self.observation_type == 'depth':
            state = self.unrealcv.read_depth_npy()

        self.trajectory = []
        self.trajectory.append(current_pose)
        self.count_steps = 0

        #angle = self.get_direction (current_pose,self.targets_pos)
        resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
        resized_state = np.expand_dims(resized_state, axis=2)

        return resized_state

    def _close(self):
        pass

    def message_handler(self, message):
        if (message == 'collision'):
            self.collision = True
        if (message.startswith('nextTarget')):
            tmp = message.split(':')[1].split(',')
            self.target = [float(tmp[0]), float(tmp[1])]
            self.isTargetChanged = True

    def isCollided(self):
        collided = self.collision
        self.collision = False
        return collided

    # functions for starting point module
    # def reset_from_testpoint(self):
    #     x,y = self.testpoints[self.start_id]
    #     z = self.height
    #     # noise
    #     x += random.uniform(-500, 2000)
    #     y += random.uniform(-80, 80)
    #     yaw = random.uniform(-45, 45)
    #
    #     self.unrealcv.set_position(x, y, z)
    #     self.unrealcv.set_rotation(0, yaw, 0)
    #     return [x,y,z,yaw]

    def reset_from_startPoint(self):
        x, y, z, yaw = self.startPoint
        # noise
        # x += random.uniform(-500, 2000)
        # y += random.uniform(-80, 80)
        # yaw = random.uniform(-45, 45)

        self.unrealcv.set_position(x, y, z)
        self.unrealcv.set_rotation(0, yaw, 0)
        return [x, y, z, yaw]

    def get_distance(self, current, target):
        dis = abs(np.array(target)[:2] - np.array(current)[:2])  # only x and y
        distance = math.sqrt(sum(dis * dis))
        return distance

    # def get_direction(self,current_pose,target_pose):
    #     y_delt = target_pose[1] - current_pose[1]
    #     x_delt = target_pose[0] - current_pose[0]
    #     if x_delt == 0:
    #         x_delt = 0.00001
    #
    #     target_angle = np.arctan(y_delt / x_delt) / 3.1415926 * 180
    #
    #     if (y_delt > 0 and x_delt < 0):
    #         target_angle += 180
    #     if (y_delt > 0 and x_delt > 0):
    #         target_angle = 360 - target_angle
    #     if (y_delt < 0 and x_delt > 0):
    #         target_angle += 360
    #
    #     difference = target_angle - current_pose[-1]
    #
    #     if (difference > 180):
    #         difference -= 360
    #
    #     #The angle difference: (-ve) means should rotate to left
    #     #(+ve) means should rotate to right
    #     #range is (-180,180]
    #     return difference

    def reward_distance(self, current_pose):
        if self.isTargetChanged:
            self.dis2target_now = self.get_distance(current_pose, self.target)
            self.isTargetChanged = False
            reward = 0.05
        else:
            distance = self.get_distance(current_pose, self.target)
            reward = (self.dis2target_now - distance) / 100
            self.dis2target_now = distance

        return reward

    def load_env_setting(self, filename):
        f = open(self.get_settingpath(filename))
        type = os.path.splitext(filename)[1]
        if type == '.json':
            import json
            setting = json.load(f)
        elif type == '.yaml':
            import yaml
            setting = yaml.load(f)
        else:
            print 'unknown type'

        print setting
        self.cam_id = setting['cam_id']
        self.env_ip = setting['env_ip']
        self.max_steps = setting['max_steps']
        self.height = setting['height']
        # self.testpoints = setting['test_xy']
        self.discrete_angular = setting['discrete_angular']
        self.continous_actions = setting['continous_actions']

        return setting

    def get_settingpath(self, filename):
        import gym_rlbot
        gympath = os.path.dirname(gym_rlbot.__file__)
        return os.path.join(gympath, 'envs/setting', filename)
Exemple #2
0
class RLBOT_base(gym.Env):
    def __init__(
        self,
        setting_file,
        test,  # if True will use the test_xy as start point
        action_type,  # 'discrete', 'continuous'
        observation_type,  # 'color', 'depth', 'rgbd'
        reward_type  # distance, bbox, bbox_distance,
    ):

        self.show = True

        print("Reading setting file: ", setting_file)
        self.test = test
        self.action_type = action_type
        self.observation_type = observation_type
        self.reward_type = reward_type
        assert self.action_type == 'discrete' or self.action_type == 'continuous'
        assert self.observation_type == 'depth'
        setting = self.load_env_setting(setting_file)

        # connect UnrealCV
        self.unrealcv = UnrealCv(9000, self.cam_id, self.env_ip)

        print("Camera_id: ", self.cam_id)
        print("Environment ip: ", self.env_ip)
        print("Observation type: ", observation_type)
        print("action_type: ", action_type)
        print("Reward type: ", reward_type)

        self.unrealcv.notify_connection()
        self.unrealcv.declare_step_by_step()

        self.count_steps = 0

        #  self.targets_pos = self.target_points[0]
        #  print ("Target points: ",self.target_points)
        #  print ("The target pose: ",self.targets_pos)

        # action
        if self.action_type == 'discrete':
            self.action_space = spaces.Discrete(len(self.discrete_actions))
        elif self.action_type == 'continuous':
            self.action_space = spaces.Box(
                low=np.array(self.continous_actions['low']),
                high=np.array(self.continous_actions['high']))

        # get start position
        current_pose = self.unrealcv.get_pose()

        #  self.dis2target_now = self.get_distance(current_pose, self.targets_pos)

        # for reset point generation
        self.trajectory = []
        self.start_id = 0

    def _step(self, action):
        info = dict(
            Collision=False,
            Arrival=False,
            Done=False,
            Maxstep=False,
            Reward=0.0,
            Action=action,
            Pose=[],
            Trajectory=self.trajectory,
            Steps=self.count_steps,
            Target=[],
            Distance=0.0,
            Direction=0.0,
            Color=None,
            Depth=None,
        )

        # return state immediately
        if action == -1:
            if self.observation_type == 'depth':
                state = info['Depth'] = self.unrealcv.read_depth_npy()

            resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
            resized_state = np.expand_dims(resized_state, axis=2)
            return resized_state, 0, False, info
        # disconnect UE
        elif action == -2:
            if self.observation_type == 'depth':
                state = info['Depth'] = self.unrealcv.read_depth_npy()

            resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
            resized_state = np.expand_dims(resized_state, axis=2)
            self.unreadcv.notify_disconnection()
            return resized_state, 0, False, info

        if self.action_type == 'discrete':
            (velocity, angle) = self.discrete_actions[action]
        else:
            (velocity, angle) = action

        info['Done'] = False

        # take action
        distance_travelled = self.unrealcv.move(velocity, angle)

        # ready = self.unrealcv.get_ready()
        # while (not ready):
        #     ready = self.unrealcv.get_ready()
        # self.unrealcv.reset_ready()

        info['Pose'] = self.unrealcv.get_pose()
        # info['Distance'] = self.get_distance(info['Pose'][:3],self.targets_pos)
        if self.reward_type == 'distance':
            info['Reward'] = self.reward_distance(info['Pose'])
        else:
            info['Reward'] = distance_travelled / 1000

        # info['Direction'] = self.get_direction (info['Pose'],self.targets_pos)
        info['Collision'] = self.unrealcv.get_collision()
        self.unrealcv.reset_collision()

        # info['Arrival'] = self.unrealcv.get_arrival()
        # self.unrealcv.reset_arrival()

        if info['Collision']:
            info['Reward'] = -5
            info['Done'] = True
        # elif info['Arrival']:
        #     info['Reward'] = 1
        #     info['Done'] = True

        #print ("R: ", str(round(info['Reward'], 3)), " D: ", str(round(info['Distance'], 3)), " A: ", str(round(info['Direction'], 3)))
        self.count_steps += 1

        # limit the max steps of every episode
        if self.count_steps > self.max_steps:
            info['Done'] = True
            info['Maxstep'] = True
            print '@@@ Reach Max Steps'

        # save the trajectory
        self.trajectory.append(info['Pose'])
        info['Trajectory'] = self.trajectory

        # update observation
        if self.observation_type == 'depth':
            state = info['Depth'] = self.unrealcv.read_depth_npy()

        if self.show:
            cv2.imshow('state', state / np.max(state))
            cv2.waitKey(1)

        resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
        resized_state = np.expand_dims(resized_state, axis=2)
        # return np.array([state, np.array([info['Distance']])]), info['Reward'], info['Done'], info
        return resized_state, info['Reward'], info['Done'], info

    def _reset(self, ):
        self.unrealcv.reset_env()

        #    ready = self.unrealcv.get_ready()
        #    while (not ready):
        #        ready = self.unrealcv.get_ready()
        #    self.unrealcv.reset_ready()

        if self.test:
            current_pose = self.reset_from_testpoint()
        else:
            current_pose = self.unrealcv.get_pose()

        if self.observation_type == 'depth':
            state = self.unrealcv.read_depth_npy()

        self.trajectory = []
        self.trajectory.append(current_pose)
        self.count_steps = 0
        #    self.dis2target_now = self.get_distance(current_pose, self.targets_pos)

        #angle = self.get_direction (current_pose,self.targets_pos)
        resized_state = cv2.resize(state, (INPUT_WIDTH, INPUT_HEIGHT))
        resized_state = np.expand_dims(resized_state, axis=2)

        return resized_state

    def _close(self):
        pass

    # def _get_action_size(self):
    #     return len(self.action)

    # functions for starting point module
    def reset_from_testpoint(self):
        x, y = self.testpoints[self.start_id]
        z = self.height
        # noise
        x += random.uniform(-500, 2000)
        y += random.uniform(-80, 80)
        yaw = random.uniform(-45, 45)

        self.unrealcv.set_position(x, y, z)
        self.unrealcv.set_rotation(0, yaw, 0)
        return [x, y, z, yaw]

    # def get_distance(self,current,target):
    #  #    error = abs(np.array(target)[:2] - np.array(current)[:2])# only x and y
    #  #    distance = math.sqrt(sum(error * error))
    #     distance = target[0] - current[0]
    #     return distance
    #
    # def get_direction(self,current_pose,target_pose):
    #     y_delt = target_pose[1] - current_pose[1]
    #     x_delt = target_pose[0] - current_pose[0]
    #     if x_delt == 0:
    #         x_delt = 0.00001
    #
    #     target_angle = np.arctan(y_delt / x_delt) / 3.1415926 * 180
    #
    #     if (y_delt > 0 and x_delt < 0):
    #         target_angle += 180
    #     if (y_delt > 0 and x_delt > 0):
    #         target_angle = 360 - target_angle
    #     if (y_delt < 0 and x_delt > 0):
    #         target_angle += 360
    #
    #     difference = target_angle - current_pose[-1]
    #
    #     if (difference > 180):
    #         difference -= 360
    #
    #     #The angle difference: (-ve) means should rotate to left
    #     #(+ve) means should rotate to right
    #     #range is (-180,180]
    #     return difference
    #
    # def reward_distance(self, dis2target_now):
    #      reward = (self.dis2target_now - dis2target_now[0]) / max(self.dis2target_now, 100)
    #      self.dis2target_now = dis2target_now[0]
    #
    #      return reward

    def load_env_setting(self, filename):
        f = open(self.get_settingpath(filename))
        type = os.path.splitext(filename)[1]
        if type == '.json':
            import json
            setting = json.load(f)
        elif type == '.yaml':
            import yaml
            setting = yaml.load(f)
        else:
            print 'unknown type'

        print setting
        self.cam_id = setting['cam_id']
        self.env_ip = setting['env_ip']
        #    self.target_points = setting['target_points']
        self.max_steps = setting['max_steps']
        self.height = setting['height']
        self.testpoints = setting['test_xy']
        self.discrete_actions = setting['discrete_actions']
        self.continous_actions = setting['continous_actions']

        return setting

    def get_settingpath(self, filename):
        import gym_rlbot
        gympath = os.path.dirname(gym_rlbot.__file__)
        return os.path.join(gympath, 'envs/setting', filename)
Exemple #3
0
class UnrealCvSimple(gym.Env):
    # init the Unreal Gym Environment
    def __init__(self, ENV_NAME='RealisticRendering'):
        self.cam_id = 0
        # run virtual enrionment in docker container
        self.docker = run_docker.RunDocker()
        env_ip, env_dir = self.docker.start(ENV_NAME=ENV_NAME)
        # connect unrealcv client to server
        self.unrealcv = UnrealCv(self.cam_id, ip=env_ip, env=env_dir)
        self.startpose = self.unrealcv.get_pose()
        # ACTION: (linear velocity ,angle velocity)
        self.ACTION_LIST = [
            (20, 0),
            (20, 15),
            (20, -15),
            (20, 30),
            (20, -30),
        ]
        self.count_steps = 0
        self.max_steps = 100
        self.target_pos = (-60, 0, 50)
        self.action_space = gym.spaces.Discrete(len(self.ACTION_LIST))
        state = self.unrealcv.read_image(self.cam_id, 'lit')
        self.observation_space = gym.spaces.Box(low=0,
                                                high=255,
                                                shape=state.shape)

    # update the environment step by step
    def _step(self, action=0):
        (velocity, angle) = self.ACTION_LIST[action]
        self.count_steps += 1
        collision = self.unrealcv.move(self.cam_id, angle, velocity)
        reward, done = self.reward(collision)
        state = self.unrealcv.read_image(self.cam_id, 'lit')

        # limit max step per episode
        if self.count_steps > self.max_steps:
            done = True
            print 'Reach Max Steps'

        return state, reward, done, {}

    # reset the environment
    def _reset(self, ):
        x, y, z, yaw = self.startpose
        self.unrealcv.set_position(self.cam_id, x, y, z)
        self.unrealcv.set_rotation(self.cam_id, 0, yaw, 0)
        state = self.unrealcv.read_image(self.cam_id, 'lit')
        self.count_steps = 0
        return state

    # close docker while closing openai gym
    def _close(self):
        self.docker.close()

    # calcuate reward according to your task
    def reward(self, collision):
        done = False
        reward = -0.01
        if collision:
            done = True
            reward = -1
            print 'Collision Detected!!'
        else:
            distance = self.cauculate_distance(self.target_pos,
                                               self.unrealcv.get_pos())
            if distance < 50:
                reward = 10
                done = True
                print('Get Target Place!')
        return reward, done

    # calcuate the 2D distance between the target and camera
    def cauculate_distance(self, target, current):
        error = abs(np.array(target) - np.array(current))[:2]  # only x and y
        distance = math.sqrt(sum(error * error))
        return distance
class UnrealCvSearch(gym.Env):
   def __init__(self,
                TARGETS = ['SM_Plant_7','SM_Plant_8'],# you can change it for other targets
                DOCKER = True,
                ENV_NAME='RealisticRendering',
                cam_id = 0,
                MAX_STEPS = 100):
     self.cam_id = cam_id
     self.target_list = TARGETS

     if DOCKER:
         self.docker = run_docker.RunDocker()
         env_ip, env_dir = self.docker.start(ENV_NAME = ENV_NAME)
         self.unrealcv = UnrealCv(self.cam_id, ip=env_ip, targets=self.target_list, env=env_dir)
     else:
         self.docker = False
         #you need run the environment previously
         env_ip = '127.0.0.1'
         self.unrealcv = UnrealCv(self.cam_id, ip=env_ip, targets=self.target_list)

     print env_ip


     self.reward_th = 0.2
     self.trigger_th = 0.9

     self.origin = [
         (-106.195,  437.424,   40),
         (  27.897, -162.437,   40),
         ( -66.601,   -4.503,   40),
         (  10.832,  135.126,   40),
         (  67.903,   26.995,   40),
         ( -23.558, -187.354,   40),
         ( -80.312,  254.579,   40),
     ]

     self.count_steps = 0
     self.max_steps = MAX_STEPS
     self.action = (0,0,0) #(velocity,angle,trigger)

     self.targets_pos = self.unrealcv.get_objects_pos(self.target_list)
     self.trajectory = []

     state = self.unrealcv.read_image(self.cam_id, 'lit')

     #self.action_space = spaces.Discrete(len(self.ACTION_LIST))
     self.action_space = spaces.Box(low = 0,high = 100, shape = self.action)
     self.observation_space = spaces.Box(low=0, high=255, shape=state.shape)

     self.trigger_count  = 0


   def _step(self, action = (0,0,0), show = False):
        info = dict(
            Collision=False,
            Done = False,
            Trigger=0.0,
            Maxstep=False,
            Reward=0.0,
            Action = action,
            Bbox =[],
            Pose = [],
            Trajectory = [],
            Steps = self.count_steps,
            Target = self.targets_pos[0]
        )

        (velocity, angle, info['Trigger']) = action
        self.count_steps += 1
        info['Done'] = False

        # the robot think that it found the target object,the episode is done
        # and get a reward by bounding box size
        # only three times false trigger allowed in every episode
        if info['Trigger'] > self.trigger_th :
            state = self.unrealcv.read_image(self.cam_id, 'lit', show=False)
            self.trigger_count += 1
            info['Reward'],info['Bbox'] = self.reward_bbox()
            if info['Reward'] > 0 or self.trigger_count > 3:
                info['Done'] = True
                print 'Trigger Terminal!'

        # if collision occurs, the episode is done and reward is -1
        else :
            info['Collision'] = self.unrealcv.move(self.cam_id, angle, velocity)
            state = self.unrealcv.read_image(self.cam_id, 'lit', show=False)
            info['Reward'] = 0
            if info['Collision']:
                info['Reward'] = -1
                info['Done'] = True
                print ('Collision!!')

        # limit the max steps of every episode
        if self.count_steps > self.max_steps:
           info['Done'] = True
           info['Maxstep'] = True
           print 'Reach Max Steps'

        # save the trajectory
        info['Pose'] = self.unrealcv.get_pose()
        self.trajectory.append(info['Pose'])
        info['Trajectory'] = self.trajectory

        if show:
            self.unrealcv.show_img(state, 'state')

        return state, info['Reward'], info['Done'], info
   def _reset(self, ):
       # set a random start point according to the origin list
       self.count_steps = 0
       start_point = random.randint(0, len(self.origin)-1)
       x,y,z = self.origin[start_point]
       self.unrealcv.set_position(self.cam_id, x, y, z)
       self.unrealcv.set_rotation(self.cam_id, 0, random.randint(0,360), 0)
       state = self.unrealcv.read_image(self.cam_id , 'lit')

       current_pos = self.unrealcv.get_pos()
       self.trajectory = []
       self.trajectory.append(current_pos)
       self.trigger_count = 0

       return state

   def _close(self):
       if self.docker:
           self.docker.close()

   def _get_action_size(self):
       return len(self.action)


   def reward_bbox(self):
       object_mask = self.unrealcv.read_image(self.cam_id, 'object_mask')
       #mask, box = self.unrealcv.get_bbox(object_mask, self.target_list[0])
       boxes = self.unrealcv.get_bboxes(object_mask,self.target_list)
       reward = 0
       for box in boxes:
           reward += self.calculate_bbox_reward(box)

       if reward > self.reward_th:
            reward = reward * 10
            print ('Get ideal Target!!!')
       elif reward == 0:
           reward = -1
           print ('Get Nothing')
       else:
           reward = 0
           print ('Get small Target!!!')

       return reward,boxes


   def calculate_bbox_reward(self,box):
       (xmin,ymin),(xmax,ymax) = box
       boxsize = (ymax - ymin) * (xmax - xmin)
       x_c = (xmax + xmin) / 2.0
       x_bias = x_c - 0.5
       discount = max(0, 1 - x_bias ** 2)
       reward = discount * boxsize
       return reward