def forward(ctx, input, kernel, up, down, pad):
        up_x, up_y = up
        down_x, down_y = down
        pad_x0, pad_x1, pad_y0, pad_y1 = pad

        kernel_h, kernel_w = kernel.shape
        batch, channel, in_h, in_w = input.shape
        ctx.in_size = input.shape

        input = input.reshape(-1, in_h, in_w, 1)

        ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))

        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
        ctx.out_size = (out_h, out_w)

        ctx.up = (up_x, up_y)
        ctx.down = (down_x, down_y)
        ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)

        g_pad_x0 = kernel_w - pad_x0 - 1
        g_pad_y0 = kernel_h - pad_y0 - 1
        g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
        g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1

        ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)

        out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y,
                                     pad_x0, pad_x1, pad_y0, pad_y1)
        # out = out.view(major, out_h, out_w, minor)
        out = out.view(-1, channel, out_h, out_w)

        return out
Exemple #2
0
    def forward(self, input):
        out = upfirdn2d(input,
                        self.kernel,
                        up=1,
                        down=self.factor,
                        pad=self.pad)

        return out
    def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
                in_size, out_size):

        up_x, up_y = up
        down_x, down_y = down
        g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad

        grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)

        grad_input = upfirdn2d_op.upfirdn2d(
            grad_output,
            grad_kernel,
            down_x,
            down_y,
            up_x,
            up_y,
            g_pad_x0,
            g_pad_x1,
            g_pad_y0,
            g_pad_y1,
        )
        grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
                                     in_size[3])

        ctx.save_for_backward(kernel)

        pad_x0, pad_x1, pad_y0, pad_y1 = pad

        ctx.up_x = up_x
        ctx.up_y = up_y
        ctx.down_x = down_x
        ctx.down_y = down_y
        ctx.pad_x0 = pad_x0
        ctx.pad_x1 = pad_x1
        ctx.pad_y0 = pad_y0
        ctx.pad_y1 = pad_y1
        ctx.in_size = in_size
        ctx.out_size = out_size

        return grad_input
    def backward(ctx, gradgrad_input):
        kernel, = ctx.saved_tensors

        gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2],
                                                ctx.in_size[3], 1)

        gradgrad_out = upfirdn2d_op.upfirdn2d(
            gradgrad_input,
            kernel,
            ctx.up_x,
            ctx.up_y,
            ctx.down_x,
            ctx.down_y,
            ctx.pad_x0,
            ctx.pad_x1,
            ctx.pad_y0,
            ctx.pad_y1,
        )
        # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
        gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
                                         ctx.out_size[0], ctx.out_size[1])

        return gradgrad_out, None, None, None, None, None, None, None, None
Exemple #5
0
    def forward(self, input):
        # Apply blur kernel on input
        out = upfirdn2d(input, self.kernel, pad=self.pad)

        return out