Exemple #1
0
 def activation_mask(self,
                     layer,
                     unit,
                     index,
                     shape=None,
                     use_fieldmap=True):
     if shape is None:
         record, shape = self.instance_data(index)
     sw, sh = shape
     # reduction = int(round(self.iw / float(sw)))
     lp = self.layer[layer]
     blobdata = lp.blobdata
     fieldmap = lp.fieldmap
     quantdata = lp.quantdata
     threshold = quantdata[unit, int(round(quantdata.shape[1] * lp.level))]
     if use_fieldmap:
         up = upsample.upsampleL(fieldmap,
                                 blobdata[index:index + 1, unit],
                                 shape=(self.ih, self.iw),
                                 scaleshape=(sh, sw))[0]
     else:
         upsample_f = nn.Upsample(size=(self.ih, self.iw), mode='bilinear')
         up = numpy.squeeze(
             upsample_f(
                 Variable(
                     torch.Tensor(
                         blobdata[index:index + 1,
                                  unit]).unsqueeze(0))).data.cpu().numpy())
     mask = up > threshold
     return mask
Exemple #2
0
def activation_mask(lp, unit, index, shape):
    blobdata = lp.blobdata
    fieldmap = lp.fieldmap
    quantdata = lp.quantdata
    threshold = quantdata[unit, int(round(quantdata.shape[1] * lp.level))]
    up = upsample.upsampleL(fieldmap,
                            blobdata[index:index + 1, unit],
                            shape=lp.input_dim,
                            scaleshape=shape)[0]
    mask = up > threshold
    return mask
Exemple #3
0
 def activation_mask(self, layer, unit, index, shape=None):
     if shape is None:
         record, shape = self.instance_data(index)
     sw, sh = shape
     # reduction = int(round(self.iw / float(sw)))
     lp = self.layer[layer]
     blobdata = lp.blobdata
     fieldmap = lp.fieldmap
     quantdata = lp.quantdata
     threshold = quantdata[unit, int(round(quantdata.shape[1] * lp.level))]
     up = upsample.upsampleL(fieldmap,
                             blobdata[index:index + 1, unit],
                             shape=(self.ih, self.iw),
                             scaleshape=(sh, sw))[0]
     mask = up > threshold
     return mask
Exemple #4
0
def process_data(fn_t, fn_read, shape, tally_depth, ds, iw, ih, categories,
                 fieldmap, thresh, labelcat, batch_size, ahead, verbose,
                 thread, start, end):
    unit_size = len(thresh)
    blobdata = cached_memmap(fn_read, mode='r', dtype='float32', shape=shape)
    count_t = cached_memmap(fn_t,
                            mode='r+',
                            dtype='int32',
                            shape=(ds.size(), tally_depth, 3))
    count_t[...] = 0
    # The main loop
    if verbose:
        print 'Beginning work for evaluating', blob
    pf = loadseg.SegmentationPrefetcher(ds,
                                        categories=categories,
                                        start=start,
                                        end=end,
                                        once=True,
                                        batch_size=batch_size,
                                        ahead=ahead,
                                        thread=False)
    index = start
    start_time = time.time()
    last_batch_time = start_time
    batch_size = 0
    for batch in pf.batches():
        batch_time = time.time()
        rate = (index - start) / (batch_time - start_time + 1e-15)
        batch_rate = batch_size / (batch_time - last_batch_time + 1e-15)
        last_batch_time = batch_time
        if verbose:
            print 'labelprobe index', index, 'items per sec', batch_rate, rate
            sys.stdout.flush()
        for rec in batch:
            sw, sh = [rec[k] for k in ['sw', 'sh']]
            reduction = int(round(iw / float(sw)))
            up = upsample.upsampleL(fieldmap,
                                    blobdata[index],
                                    shape=(sh, sw),
                                    reduction=reduction)
            mask = up > thresh
            accumulate_counts(mask, [rec[cat] for cat in categories],
                              count_t[index], unit_size, labelcat)
            index += 1
        batch_size = len(batch)
    count_t.flush()