Exemple #1
0
def conditional_upzone(scenario, scenario_inputs, attr_name, upzone_name):
    """

    Parameters
    ----------
    scenario : str
        The name of the active scenario (set to "baseline" if no scenario
        zoning)
    scenario_inputs : dict
        Dictionary of scenario options - keys are scenario names and values
        are also dictionaries of key-value paris for scenario inputs.  Right
        now "zoning_table_name" should be set to the table that contains the
        scenario based zoning for that scenario
    attr_name : str
        The name of the attribute in the baseline zoning table
    upzone_name : str
        The name of the attribute in the scenario zoning table

    Returns
    -------
    The new zoning per parcel which is increased if the scenario based
    zoning is higher than the baseline zoning
    """
    zoning_baseline = sim.get_table(
        scenario_inputs["baseline"]["zoning_table_name"])
    attr = zoning_baseline[attr_name]
    if scenario != "baseline":
        zoning_scenario = sim.get_table(
            scenario_inputs[scenario]["zoning_table_name"])
        upzone = zoning_scenario[upzone_name].dropna()
        attr = pd.concat([attr, upzone], axis=1).max(skipna=True, axis=1)
    return attr
Exemple #2
0
def conditional_upzone(scenario, scenario_inputs, attr_name, upzone_name):
    """

    Parameters
    ----------
    scenario : str
        The name of the active scenario (set to "baseline" if no scenario
        zoning)
    scenario_inputs : dict
        Dictionary of scenario options - keys are scenario names and values
        are also dictionaries of key-value paris for scenario inputs.  Right
        now "zoning_table_name" should be set to the table that contains the
        scenario based zoning for that scenario
    attr_name : str
        The name of the attribute in the baseline zoning table
    upzone_name : str
        The name of the attribute in the scenario zoning table

    Returns
    -------
    The new zoning per parcel which is increased if the scenario based
    zoning is higher than the baseline zoning
    """
    zoning_baseline = sim.get_table(
        scenario_inputs["baseline"]["zoning_table_name"])
    attr = zoning_baseline[attr_name]
    if scenario != "baseline":
        zoning_scenario = sim.get_table(
            scenario_inputs[scenario]["zoning_table_name"])
        upzone = zoning_scenario[upzone_name].dropna()
        attr = pd.concat([attr, upzone], axis=1).max(skipna=True, axis=1)
    return attr
Exemple #3
0
def model_integration_indicators():
    year = get_year()

    #Households by MGRA to PASEF
    print 'Exporting indicators: households by MGRA to PASEF'
    hh = sim.get_table('households')
    hh = hh.to_frame(hh.local_columns + ['mgra_id', 'activity_id'])
    pasef_indicators = hh.groupby(['mgra_id',
                                   'activity_id']).size().reset_index()
    pasef_indicators.columns = [
        'mgra_id', 'activity_id', 'number_of_households'
    ]
    pasef_indicators.to_csv('./data/pasef/mgra_hh_%s.csv' % year, index=False)

    #Space by LUZ to PECAS
    print 'Exporting indicators: space by LUZ to PECAS'
    b = sim.get_table('buildings')
    b = b.to_frame(b.local_columns + ['luz_id'])
    pecas_res_indicators = b[b.residential_units > 0].groupby(
        ['luz_id',
         'development_type_id']).residential_units.sum().reset_index()
    pecas_res_indicators.columns = [
        'luz_id', 'development_type_id', 'residential_units'
    ]
    pecas_res_indicators.to_csv(
        './data/pecas_urbansim_exchange/luz_du_%s.csv' % year, index=False)

    pecas_nonres_indicators = b[b.non_residential_sqft > 0].groupby(
        ['luz_id',
         'development_type_id']).non_residential_sqft.sum().reset_index()
    pecas_nonres_indicators.columns = [
        'luz_id', 'development_type_id', 'non_residential_sqft'
    ]
    pecas_nonres_indicators.to_csv(
        './data/pecas_urbansim_exchange/luz_nrsf_%s.csv' % year, index=False)
Exemple #4
0
def parcel_is_allowed(form):
    form_to_btype = sim.get_injectable("form_to_btype")
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [sim.get_table('zoning_baseline')
               ['type%d' % typ] == 't' for typ in form_to_btype[form]]
    return pd.concat(allowed, axis=1).max(axis=1).\
        reindex(sim.get_table('parcels').index).fillna(False)
Exemple #5
0
def parcel_is_allowed(form):
    form_to_btype = sim.get_injectable("form_to_btype")
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [sim.get_table('zoning_baseline')
               ['type%d' % typ] == 't' for typ in form_to_btype[form]]
    return pd.concat(allowed, axis=1).max(axis=1).\
        reindex(sim.get_table('parcels').index).fillna(False)
Exemple #6
0
def conditional_upzone(scenario, attr_name, upzone_name):
    scenario_inputs = sim.get_injectable("scenario_inputs")
    zoning_baseline = sim.get_table(
        scenario_inputs["baseline"]["zoning_table_name"])
    attr = zoning_baseline[attr_name]
    if scenario != "baseline":
        zoning_scenario = sim.get_table(
            scenario_inputs[scenario]["zoning_table_name"])
        upzone = zoning_scenario[upzone_name].dropna()
        attr = pd.concat([attr, upzone], axis=1).max(skipna=True, axis=1)
    return attr
Exemple #7
0
def conditional_upzone(scenario, attr_name, upzone_name):
    scenario_inputs = sim.get_injectable("scenario_inputs")
    zoning_baseline = sim.get_table(
        scenario_inputs["baseline"]["zoning_table_name"])
    attr = zoning_baseline[attr_name]
    if scenario != "baseline":
        zoning_scenario = sim.get_table(
            scenario_inputs[scenario]["zoning_table_name"])
        upzone = zoning_scenario[upzone_name].dropna()
        attr = pd.concat([attr, upzone], axis=1).max(skipna=True, axis=1)
    return attr
Exemple #8
0
def price_vars(net):
    nodes2 = networks.from_yaml(net, "price_vars.yaml")
    nodes2 = nodes2.fillna(0)
    print nodes2.describe()
    nodes = sim.get_table('nodes')
    nodes = nodes.to_frame().join(nodes2)
    sim.add_table("nodes", nodes)
Exemple #9
0
def residential_space_targets():
    defm_resunit_controls = pd.read_csv('data/defm_res_unit_controls.csv')
    buildings = sim.get_table('buildings').to_frame(
        columns=['development_type_id', 'residential_units'])

    number_sf_units = buildings[buildings.development_type_id.isin(
        [19])].residential_units.sum()
    number_sfa_units = buildings[buildings.development_type_id ==
                                 20].residential_units.sum()
    number_mf_units = buildings[buildings.development_type_id ==
                                21].residential_units.sum()

    year = get_year()

    sf_target = defm_resunit_controls[
        defm_resunit_controls.year ==
        year].to_dict()['single_family'].itervalues().next()
    sfa_target = defm_resunit_controls[
        defm_resunit_controls.year ==
        year].to_dict()['sf_attached'].itervalues().next()
    mf_target = defm_resunit_controls[
        defm_resunit_controls.year ==
        year].to_dict()['multi_family'].itervalues().next()
    mf_difference = mf_target - number_mf_units
    sf_difference = sf_target - number_sf_units
    sfa_difference = sfa_target - number_sfa_units

    targets = {
        'mf_residential': mf_difference,
        'sf_detached': sf_difference,
        'sf_attached': sfa_difference
    }
    return targets
Exemple #10
0
def price_vars(net):
    nodes2 = networks.from_yaml(net, "price_vars.yaml")
    nodes2 = nodes2.fillna(0)
    print nodes2.describe()
    nodes = sim.get_table('nodes')
    nodes = nodes.to_frame().join(nodes2)
    sim.add_table("nodes", nodes)
Exemple #11
0
def non_residential_space_targets():
    vacancy_multiplier = 1.7
    defm_nonres_controls = pd.read_csv('data/non_res_space_control.csv')
    buildings = sim.get_table('buildings').to_frame(columns = ['development_type_id', 'non_residential_sqft'])
    
    light_industrial_sqft = buildings[buildings.development_type_id == 2].non_residential_sqft.sum()
    heavy_industrial_sqft = buildings[buildings.development_type_id == 3].non_residential_sqft.sum()
    office_sqft = buildings[buildings.development_type_id == 4].non_residential_sqft.sum()
    retail_sqft = buildings[buildings.development_type_id == 5].non_residential_sqft.sum()
    
    year = get_year()
        
    defm_nonres_controls = defm_nonres_controls[defm_nonres_controls.yr == year]
    light_industrial_target = defm_nonres_controls[defm_nonres_controls.development_type_id == 2].total_min_sqft.values[0] * vacancy_multiplier
    heavy_industrial_target = defm_nonres_controls[defm_nonres_controls.development_type_id == 3].total_min_sqft.values[0] * vacancy_multiplier
    office_target = defm_nonres_controls[defm_nonres_controls.development_type_id == 4].total_min_sqft.values[0] * vacancy_multiplier
    retail_target = defm_nonres_controls[defm_nonres_controls.development_type_id == 5].total_min_sqft.values[0] * vacancy_multiplier
    
    light_industrial_difference = light_industrial_target - light_industrial_sqft
    heavy_industrial_difference = heavy_industrial_target - heavy_industrial_sqft
    office_difference = office_target - office_sqft
    retail_difference = retail_target - retail_sqft
    
    targets = {'light_industrial':light_industrial_difference, 'heavy_industrial':heavy_industrial_difference, 'office':office_difference, 'retail':retail_difference}
    return targets
Exemple #12
0
    def nonresidential_proforma(form, devtype_id, use, parking_rate):
        print form
        parcels = sim.get_table('parcels').to_frame()
        
        residential_to_yearly = False
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use : 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [False]
        pfc.parking_rates = {use : parking_rate}
        if use == 'retail':
            pfc.costs = {use : [160.0, 175.0, 200.0, 230.0]}
        elif use == 'industrial':
            pfc.costs = {use : [140.0, 175.0, 200.0, 230.0]}
        else: #office
            pfc.costs = {use : [160.0, 175.0, 200.0, 230.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id == devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule, fee_schedule_devtype, left_on = 'fee_schedule_id', right_on = 'fee_schedule_id')
        parcel_fee_schedule_devtype['development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial*parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby('parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data = parcel_fees_processed, index = parcels.index).fillna(0)
        
        pf = sqftproforma.SqFtProForma(pfc)
        fees = fees*pf.config.cap_rate

        return run_proforma_lookup(parcels, fees, pf, use, form, residential_to_yearly, parcel_filter = parcel_filter)
Exemple #13
0
def plot(table_names=None):
    """
    Plot relationships between columns and tables using Graphviz.

    Parameters
    ----------
    table_names : iterable of str, optional
        Names of UrbanSim registered tables to plot.
        Defaults to all registered tables.

    Returns
    -------
    graph : pygraphviz.AGraph
        PyGraphviz graph object.

    """
    if not table_names:
        # Default to all registered tables.
        table_names = simulation.list_tables()

    graph = AGraph(directed=True)
    graph.graph_attr['fontname'] = 'Sans'
    graph.graph_attr['fontsize'] = 28
    graph.node_attr['shape'] = 'box'
    graph.node_attr['fontname'] = 'Sans'
    graph.node_attr['fontcolor'] = 'blue'
    graph.edge_attr['weight'] = 2

    # Add each registered table as a subgraph with columns as nodes.
    for table_name in table_names:
        subgraph = graph.add_subgraph(name='cluster_' + table_name,
                                      label=table_name,
                                      fontcolor='red')
        table = simulation.get_table(table_name)
        for column_name in table.columns:
            full_name = table_name + '.' + column_name
            subgraph.add_node(full_name, label=column_name)

    # Iterate over computed columns to build nodes.
    for key, wrapped_col in simulation._COLUMNS.items():
        table_name = key[0]
        column_name = key[1]

        # Combine inputs from argument names and argument default values.
        args = list(wrapped_col._argspec.args)
        if wrapped_col._argspec.defaults:
            default_args = list(wrapped_col._argspec.defaults)
        else:
            default_args = []
        inputs = args[:len(args) - len(default_args)] + default_args

        # Create edge from each input column to the computed column.
        for input_name in inputs:
            full_name = table_name + '.' + column_name
            graph.add_edge(input_name, full_name)

    graph.layout(prog='dot')
    return graph
Exemple #14
0
def plot(table_names=None):
    """
    Plot relationships between columns and tables using Graphviz.

    Parameters
    ----------
    table_names : iterable of str, optional
        Names of UrbanSim registered tables to plot.
        Defaults to all registered tables.

    Returns
    -------
    graph : pygraphviz.AGraph
        PyGraphviz graph object.

    """
    if not table_names:
        # Default to all registered tables.
        table_names = simulation.list_tables()

    graph = AGraph(directed=True)
    graph.graph_attr['fontname'] = 'Sans'
    graph.graph_attr['fontsize'] = 28
    graph.node_attr['shape'] = 'box'
    graph.node_attr['fontname'] = 'Sans'
    graph.node_attr['fontcolor'] = 'blue'
    graph.edge_attr['weight'] = 2

    # Add each registered table as a subgraph with columns as nodes.
    for table_name in table_names:
        subgraph = graph.add_subgraph(name='cluster_' + table_name,
                                      label=table_name, fontcolor='red')
        table = simulation.get_table(table_name)
        for column_name in table.columns:
            full_name = table_name + '.' + column_name
            subgraph.add_node(full_name, label=column_name)

    # Iterate over computed columns to build nodes.
    for key, wrapped_col in simulation._COLUMNS.items():
        table_name = key[0]
        column_name = key[1]

        # Combine inputs from argument names and argument default values.
        args = list(wrapped_col._argspec.args)
        if wrapped_col._argspec.defaults:
            default_args = list(wrapped_col._argspec.defaults)
        else:
            default_args = []
        inputs = args[:len(args) - len(default_args)] + default_args

        # Create edge from each input column to the computed column.
        for input_name in inputs:
            full_name = table_name + '.' + column_name
            graph.add_edge(input_name, full_name)

    graph.layout(prog='dot')
    return graph
Exemple #15
0
def from_yaml(cfgname):
    print "Computing accessibility variables"
    cfg = yaml.load(open(misc.config(cfgname)))

    nodes = pd.DataFrame(index=NETWORKS.external_nodeids)

    node_col = cfg.get('node_col', None)

    for variable in cfg['variable_definitions']:

        name = variable["name"]
        print "Computing %s" % name

        decay = {
            "exponential": "DECAY_EXP",
            "linear": "DECAY_LINEAR",
            "flat": "DECAY_FLAT"
        }.get(variable.get("decay", "linear"))

        agg = {
            "sum": "AGG_SUM",
            "average": "AGG_AVE",
            "stddev": "AGG_STDDEV"
        }.get(variable.get("aggregation", "sum"))

        vname = variable.get("varname", None)

        radius = variable["radius"]

        dfname = variable["dataframe"]

        flds = [vname] if vname else []
        if 'add_fields' in variable:
            flds += variable['add_fields']
        if node_col:
            flds.append(node_col)
        logger.info("    Fields available to accvar =", ', '.join(flds))

        df = sim.get_table(dfname).to_frame(flds)

        if "filters" in variable:
            df = util.apply_filter_query(df, variable["filters"])
            logger.info("    Filters = %s" % variable["filters"])

        logger.info("    dataframe = %s, varname=%s" % (dfname, vname))
        logger.info("    radius = %s, aggregation = %s, decay = %s" % (
            radius, agg, decay))

        nodes[name] = NETWORKS.accvar(
            df, radius, node_ids=node_col, agg=agg, decay=decay,
            vname=vname).astype('float').values

        if "apply" in variable:
            nodes[name] = nodes[name].apply(eval(variable["apply"]))

    return nodes
Exemple #16
0
def job_spaces():
    store = sim.get_injectable('store')
    b = sim.get_table('buildings').to_frame(['luz_id', 'development_type_id','non_residential_sqft'])
    bsqft_job = store['building_sqft_per_job']
    merged = pd.merge(b.reset_index(), bsqft_job, left_on = ['luz_id', 'development_type_id'], right_on = ['luz_id', 'development_type_id'])
    merged = merged.set_index('building_id')
    merged.sqft_per_emp[merged.sqft_per_emp < 40] = 40
    merged['job_spaces'] = np.ceil(merged.non_residential_sqft / merged.sqft_per_emp)
    job_spaces = pd.Series(merged.job_spaces, index = b.index)
    b['job_spaces'] = job_spaces
    b.job_spaces[b.job_spaces.isnull()] = np.ceil(b.non_residential_sqft/200.0)
    return b.job_spaces
Exemple #17
0
def model_integration_indicators():
    year = get_year()
    
    #Households by MGRA to PASEF
    print 'Exporting indicators: households by MGRA to PASEF'
    hh = sim.get_table('households')
    hh = hh.to_frame(hh.local_columns + ['mgra_id', 'activity_id'])
    pasef_indicators = hh.groupby(['mgra_id', 'activity_id']).size().reset_index()
    pasef_indicators.columns = ['mgra_id', 'activity_id', 'number_of_households']
    pasef_indicators.to_csv('./data/pasef/mgra_hh_%s.csv'%year, index = False)
    
    #Space by LUZ to PECAS
    print 'Exporting indicators: space by LUZ to PECAS'
    b = sim.get_table('buildings')
    b = b.to_frame(b.local_columns + ['luz_id'])
    pecas_res_indicators = b[b.residential_units > 0].groupby(['luz_id', 'development_type_id']).residential_units.sum().reset_index()
    pecas_res_indicators.columns = ['luz_id', 'development_type_id', 'residential_units']
    pecas_res_indicators.to_csv('./data/pecas_urbansim_exchange/luz_du_%s.csv'%year, index = False)
    
    pecas_nonres_indicators = b[b.non_residential_sqft > 0].groupby(['luz_id', 'development_type_id']).non_residential_sqft.sum().reset_index()
    pecas_nonres_indicators.columns = ['luz_id', 'development_type_id', 'non_residential_sqft']
    pecas_nonres_indicators.to_csv('./data/pecas_urbansim_exchange/luz_nrsf_%s.csv'%year, index = False)
Exemple #18
0
def zoning_allowed_uses(store, parcels):
    parcels_allowed = store['zoning_allowed_uses']
    parcels = sim.get_table('parcels').to_frame(columns = ['zoning_id',])
    
    allowed_df = pd.DataFrame(index = parcels.index)
    for devtype in np.unique(parcels_allowed.development_type_id):
        devtype_allowed = parcels_allowed[parcels_allowed.development_type_id == devtype].set_index('zoning_id')
        allowed = misc.reindex(devtype_allowed.development_type_id, parcels.zoning_id)
        df = pd.DataFrame(index=allowed.index)
        df['allowed'] = False
        df[~allowed.isnull()] = True
        allowed_df[devtype] = df.allowed

    return allowed_df
Exemple #19
0
    def write_parcel_output(self,
                            add_xy=None):
        """
        Write the parcel-level output to a csv file

        Parameters
        ----------
        add_xy : dictionary (optional)
            Used to add x, y values to the output - an example dictionary is
            pasted below - the parameters should be fairly self explanatory.
            Note that from_epsg and to_epsg can be omitted in which case the
            coordinate system is not changed.  NOTE: pyproj is required
            if changing coordinate systems::

                {
                    "xy_table": "parcels",
                    "foreign_key": "parcel_id",
                    "x_col": "x",
                    "y_col": "y",
                    "from_epsg": 3740,
                    "to_epsg": 4326
                }


        Returns
        -------
        Nothing
        """
        if self.parcel_output is None:
            return

        po = self.parcel_output
        if add_xy is not None:
            x_name, y_name = add_xy["x_col"], add_xy["y_col"]
            xy_joinname = add_xy["foreign_key"]
            xy_df = sim.get_table(add_xy["xy_table"])
            po[x_name] = misc.reindex(xy_df[x_name], po[xy_joinname])
            po[y_name] = misc.reindex(xy_df[y_name], po[xy_joinname])

            if "from_epsg" in add_xy and "to_epsg" in add_xy:
                import pyproj
                p1 = pyproj.Proj('+init=epsg:%d' % add_xy["from_epsg"])
                p2 = pyproj.Proj('+init=epsg:%d' % add_xy["to_epsg"])
                x2, y2 = pyproj.transform(p1, p2,
                                          po[x_name].values,
                                          po[y_name].values)
                po[x_name], po[y_name] = x2, y2

        po.to_csv(self.parcel_indicator_file, index_label="development_id")
Exemple #20
0
    def write_parcel_output(self,
                            add_xy=None):
        """
        Write the parcel-level output to a csv file

        Parameters
        ----------
        add_xy : dictionary (optional)
            Used to add x, y values to the output - an example dictionary is
            pasted below - the parameters should be fairly self explanatory.
            Note that from_epsg and to_epsg can be omitted in which case the
            coordinate system is not changed.  NOTE: pyproj is required
            if changing coordinate systems::

                {
                    "xy_table": "parcels",
                    "foreign_key": "parcel_id",
                    "x_col": "x",
                    "y_col": "y",
                    "from_epsg": 3740,
                    "to_epsg": 4326
                }


        Returns
        -------
        Nothing
        """
        if self.parcel_output is None:
            return

        po = self.parcel_output
        if add_xy is not None:
            x_name, y_name = add_xy["x_col"], add_xy["y_col"]
            xy_joinname = add_xy["foreign_key"]
            xy_df = sim.get_table(add_xy["xy_table"])
            po[x_name] = misc.reindex(xy_df[x_name], po[xy_joinname])
            po[y_name] = misc.reindex(xy_df[y_name], po[xy_joinname])

            if "from_epsg" in add_xy and "to_epsg" in add_xy:
                import pyproj
                p1 = pyproj.Proj('+init=epsg:%d' % add_xy["from_epsg"])
                p2 = pyproj.Proj('+init=epsg:%d' % add_xy["to_epsg"])
                x2, y2 = pyproj.transform(p1, p2,
                                          po[x_name].values,
                                          po[y_name].values)
                po[x_name], po[y_name] = x2, y2

        po.to_csv(self.parcel_indicator_file, index_label="development_id")
Exemple #21
0
def parcel_is_allowed(form):
    parcels = sim.get_table('parcels')
    zoning_allowed_uses = sim.get_table('zoning_allowed_uses').to_frame()

    if form == 'sf_detached':
        allowed = zoning_allowed_uses[19]
    elif form == 'sf_attached':
        allowed = zoning_allowed_uses[20]
    elif form == 'mf_residential':
        allowed = zoning_allowed_uses[21]
    elif form == 'light_industrial':
        allowed = zoning_allowed_uses[2]
    elif form == 'heavy_industrial':
        allowed = zoning_allowed_uses[3]
    elif form == 'office':
        allowed = zoning_allowed_uses[4]
    elif form == 'retail':
        allowed = zoning_allowed_uses[5]
    else:
        df = pd.DataFrame(index=parcels.index)
        df['allowed'] = True
        allowed = df.allowed

    return allowed
Exemple #22
0
def parcel_is_allowed(form):
    parcels = sim.get_table('parcels')
    zoning_allowed_uses = sim.get_table('zoning_allowed_uses').to_frame()
    
    if form == 'sf_detached':
        allowed = zoning_allowed_uses[19]
    elif form == 'sf_attached':
        allowed = zoning_allowed_uses[20]
    elif form == 'mf_residential':
        allowed = zoning_allowed_uses[21]
    elif form == 'light_industrial':
        allowed = zoning_allowed_uses[2]
    elif form == 'heavy_industrial':
        allowed = zoning_allowed_uses[3]
    elif form == 'office':
        allowed = zoning_allowed_uses[4]
    elif form == 'retail':
        allowed = zoning_allowed_uses[5]
    else:
        df = pd.DataFrame(index=parcels.index)
        df['allowed'] = True
        allowed = df.allowed
        
    return allowed
Exemple #23
0
def from_yaml(net, cfgname):
    print "Computing accessibility variables"
    cfg = yaml.load(open(misc.config(cfgname)))

    nodes = pd.DataFrame(index=net.node_ids)

    assert "node_col" in cfg, "Need to specify from where to take the node id"
    node_col = cfg.get('node_col')

    for variable in cfg['variable_definitions']:

        name = variable["name"]
        print "Computing %s" % name

        decay = variable.get("decay", "linear")
        agg = variable.get("aggregation", "sum")
        vname = variable.get("varname", None)
        radius = variable["radius"]
        dfname = variable["dataframe"]

        flds = [vname] if vname else []
        flds.append(node_col)
        if "filters" in variable:
            flds += util.columns_in_filters(variable["filters"])
        logger.info("    Fields available to aggregate = " + ', '.join(flds))

        df = sim.get_table(dfname).to_frame(flds)

        if "filters" in variable:
            df = util.apply_filter_query(df, variable["filters"])
            logger.info("    Filters = %s" % variable["filters"])

        logger.info("    dataframe = %s, varname=%s" % (dfname, vname))
        logger.info("    radius = %s, aggregation = %s, decay = %s" % (
            radius, agg, decay))

        # set the variable
        net.set(df[node_col], variable=df[vname] if vname else None)
        # aggregate it
        nodes[name] = net.aggregate(radius, type=agg, decay=decay)

        if "apply" in variable:
            nodes[name] = nodes[name].apply(eval(variable["apply"]))

    return nodes
Exemple #24
0
def zoning_allowed_uses(store, parcels):
    parcels_allowed = store['zoning_allowed_uses']
    parcels = sim.get_table('parcels').to_frame(columns=[
        'zoning_id',
    ])

    allowed_df = pd.DataFrame(index=parcels.index)
    for devtype in np.unique(parcels_allowed.development_type_id):
        devtype_allowed = parcels_allowed[parcels_allowed.development_type_id
                                          == devtype].set_index('zoning_id')
        allowed = misc.reindex(devtype_allowed.development_type_id,
                               parcels.zoning_id)
        df = pd.DataFrame(index=allowed.index)
        df['allowed'] = False
        df[~allowed.isnull()] = True
        allowed_df[devtype] = df.allowed

    return allowed_df
Exemple #25
0
def job_spaces():
    store = sim.get_injectable('store')
    b = sim.get_table('buildings').to_frame(
        ['luz_id', 'development_type_id', 'non_residential_sqft'])
    bsqft_job = store['building_sqft_per_job']
    merged = pd.merge(b.reset_index(),
                      bsqft_job,
                      left_on=['luz_id', 'development_type_id'],
                      right_on=['luz_id', 'development_type_id'])
    merged = merged.set_index('building_id')
    merged.sqft_per_emp[merged.sqft_per_emp < 40] = 40
    merged['job_spaces'] = np.ceil(merged.non_residential_sqft /
                                   merged.sqft_per_emp)
    job_spaces = pd.Series(merged.job_spaces, index=b.index)
    b['job_spaces'] = job_spaces
    b.job_spaces[b.job_spaces.isnull()] = np.ceil(b.non_residential_sqft /
                                                  200.0)
    return b.job_spaces
Exemple #26
0
def non_residential_space_targets():
    vacancy_multiplier = 1.7
    defm_nonres_controls = pd.read_csv('data/non_res_space_control.csv')
    buildings = sim.get_table('buildings').to_frame(
        columns=['development_type_id', 'non_residential_sqft'])

    light_industrial_sqft = buildings[buildings.development_type_id ==
                                      2].non_residential_sqft.sum()
    heavy_industrial_sqft = buildings[buildings.development_type_id ==
                                      3].non_residential_sqft.sum()
    office_sqft = buildings[buildings.development_type_id ==
                            4].non_residential_sqft.sum()
    retail_sqft = buildings[buildings.development_type_id ==
                            5].non_residential_sqft.sum()

    year = get_year()

    defm_nonres_controls = defm_nonres_controls[defm_nonres_controls.yr ==
                                                year]
    light_industrial_target = defm_nonres_controls[
        defm_nonres_controls.development_type_id ==
        2].total_min_sqft.values[0] * vacancy_multiplier
    heavy_industrial_target = defm_nonres_controls[
        defm_nonres_controls.development_type_id ==
        3].total_min_sqft.values[0] * vacancy_multiplier
    office_target = defm_nonres_controls[
        defm_nonres_controls.development_type_id ==
        4].total_min_sqft.values[0] * vacancy_multiplier
    retail_target = defm_nonres_controls[
        defm_nonres_controls.development_type_id ==
        5].total_min_sqft.values[0] * vacancy_multiplier

    light_industrial_difference = light_industrial_target - light_industrial_sqft
    heavy_industrial_difference = heavy_industrial_target - heavy_industrial_sqft
    office_difference = office_target - office_sqft
    retail_difference = retail_target - retail_sqft

    targets = {
        'light_industrial': light_industrial_difference,
        'heavy_industrial': heavy_industrial_difference,
        'office': office_difference,
        'retail': retail_difference
    }
    return targets
Exemple #27
0
def residential_space_targets():
    defm_resunit_controls = pd.read_csv('data/defm_res_unit_controls.csv')
    buildings = sim.get_table('buildings').to_frame(columns = ['development_type_id', 'residential_units'])

    number_sf_units = buildings[buildings.development_type_id.isin([19])].residential_units.sum()
    number_sfa_units = buildings[buildings.development_type_id == 20].residential_units.sum()
    number_mf_units = buildings[buildings.development_type_id == 21].residential_units.sum()

    year = get_year()
        
    sf_target = defm_resunit_controls[defm_resunit_controls.year == year].to_dict()['single_family'].itervalues().next()
    sfa_target = defm_resunit_controls[defm_resunit_controls.year == year].to_dict()['sf_attached'].itervalues().next()
    mf_target = defm_resunit_controls[defm_resunit_controls.year == year].to_dict()['multi_family'].itervalues().next()
    mf_difference = mf_target - number_mf_units
    sf_difference = sf_target - number_sf_units
    sfa_difference = sfa_target - number_sfa_units

    targets = {'mf_residential':mf_difference, 'sf_detached':sf_difference, 'sf_attached':sfa_difference}
    return targets
Exemple #28
0
    def nonresidential_proforma(form, devtype_id, use, parking_rate):
        print form
        parcels = sim.get_table('parcels').to_frame()

        residential_to_yearly = False
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use: 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [False]
        pfc.parking_rates = {use: parking_rate}
        if use == 'retail':
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}
        elif use == 'industrial':
            pfc.costs = {use: [140.0, 175.0, 200.0, 230.0]}
        else:  #office
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id ==
                                            devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule,
                                               fee_schedule_devtype,
                                               left_on='fee_schedule_id',
                                               right_on='fee_schedule_id')
        parcel_fee_schedule_devtype[
            'development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial * parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby(
            'parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data=parcel_fees_processed,
                         index=parcels.index).fillna(0)

        pf = sqftproforma.SqFtProForma(pfc)
        fees = fees * pf.config.cap_rate

        return run_proforma_lookup(parcels,
                                   fees,
                                   pf,
                                   use,
                                   form,
                                   residential_to_yearly,
                                   parcel_filter=parcel_filter)
Exemple #29
0
def lcm_simulate(cfg, choosers, buildings, join_tbls, out_fname,
                 supply_fname, vacant_fname,
                 enable_supply_correction=None):
    """
    Simulate the location choices for the specified choosers

    Parameters
    ----------
    cfg : string
        The name of the yaml config file from which to read the location
        choice model
    choosers : DataFrameWrapper
        A dataframe of agents doing the choosing
    buildings : DataFrameWrapper
        A dataframe of buildings which the choosers are locating in and which
        have a supply
    join_tbls : list of strings
        A list of land use dataframes to give neighborhood info around the
        buildings - will be joined to the buildings using existing broadcasts.
    out_fname : string
        The column name to write the simulated location to
    supply_fname : string
        The string in the buildings table that indicates the amount of
        available units there are for choosers, vacant or not
    vacant_fname : string
        The string in the buildings table that indicates the amount of vacant
        units there will be for choosers
    enable_supply_correction : Python dict
        Should contain keys "price_col" and "submarket_col" which are set to
        the column names in buildings which contain the column for prices and
        an identifier which segments buildings into submarkets
    """
    cfg = misc.config(cfg)

    choosers_df = utils.to_frame(choosers, [], cfg, additional_columns=[out_fname])
    
    additional_columns = [supply_fname, vacant_fname]
    if enable_supply_correction is not None and \
            "submarket_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["submarket_col"]]
    if enable_supply_correction is not None and \
            "price_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["price_col"]]
    locations_df = utils.to_frame(buildings, join_tbls, cfg,
                            additional_columns=additional_columns)
    
    
    available_units = buildings[supply_fname]
    vacant_units = buildings[vacant_fname]


    print "There are %d total available units" % available_units.sum()
    print "    and %d total choosers" % len(choosers)
    print "    but there are %d overfull buildings" % \
          len(vacant_units[vacant_units < 0])

    vacant_units = vacant_units[vacant_units > 0]

    # sometimes there are vacant units for buildings that are not in the
    # locations_df, which happens for reasons explained in the warning below
    indexes = np.repeat(vacant_units.index.values,
                        vacant_units.values.astype('int'))
    isin = pd.Series(indexes).isin(locations_df.index)
    missing = len(isin[isin == False])
    indexes = indexes[isin.values]
    units = locations_df.loc[indexes].reset_index()
    utils.check_nas(units)

    print "    for a total of %d temporarily empty units" % vacant_units.sum()
    print "    in %d buildings total in the region" % len(vacant_units)

    if missing > 0:
        print "WARNING: %d indexes aren't found in the locations df -" % \
            missing
        print "    this is usually because of a few records that don't join "
        print "    correctly between the locations df and the aggregations tables"

    movers = choosers_df[choosers_df[out_fname] == -1]
    print "There are %d total movers for this LCM" % len(movers)

    if enable_supply_correction is not None:
        assert isinstance(enable_supply_correction, dict)
        assert "price_col" in enable_supply_correction
        price_col = enable_supply_correction["price_col"]
        assert "submarket_col" in enable_supply_correction
        submarket_col = enable_supply_correction["submarket_col"]

        lcm = utils.yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)

        if enable_supply_correction.get("warm_start", False) is True:
            raise NotImplementedError()

        multiplier_func = enable_supply_correction.get("multiplier_func", None)
        if multiplier_func is not None:
            multiplier_func = sim.get_injectable(multiplier_func)

        kwargs = enable_supply_correction.get('kwargs', {})
        new_prices, submarkets_ratios = supply_and_demand(
            lcm,
            movers,
            units,
            submarket_col,
            price_col,
            base_multiplier=None,
            multiplier_func=multiplier_func,
            **kwargs)

        # we will only get back new prices for those alternatives
        # that pass the filter - might need to specify the table in
        # order to get the complete index of possible submarkets
        submarket_table = enable_supply_correction.get("submarket_table", None)
        if submarket_table is not None:
            submarkets_ratios = submarkets_ratios.reindex(
                sim.get_table(submarket_table).index).fillna(1)
            # write final shifters to the submarket_table for use in debugging
            sim.get_table(submarket_table)["price_shifters"] = submarkets_ratios

        print "Running supply and demand"
        print "Simulated Prices"
        print buildings[price_col].describe()
        print "Submarket Price Shifters"
        print submarkets_ratios.describe()
        # we want new prices on the buildings, not on the units, so apply
        # shifters directly to buildings and ignore unit prices
        sim.add_column(buildings.name,
                       price_col+"_hedonic", buildings[price_col])
        new_prices = buildings[price_col] * \
            submarkets_ratios.loc[buildings[submarket_col]].values
        buildings.update_col_from_series(price_col, new_prices)
        print "Adjusted Prices"
        print buildings[price_col].describe()

    #if len(movers) > vacant_units.sum():
    #    print "WARNING: Not enough locations for movers"
    #    print "    reducing locations to size of movers for performance gain"
    #    movers = movers.head(vacant_units.sum())

    new_units, _ = utils.yaml_to_class(cfg).predict_from_cfg(movers, units, cfg, location_ratio=100.0)
    # new_units returns nans when there aren't enough units,
    # get rid of them and they'll stay as -1s
    new_units = new_units.dropna()

    # go from units back to buildings
    new_buildings = pd.Series(units.loc[new_units.values][out_fname].values,
                              index=new_units.index)

    choosers.update_col_from_series(out_fname, new_buildings)
    utils._print_number_unplaced(choosers, out_fname)

    if enable_supply_correction is not None:
        new_prices = buildings[price_col]
        if "clip_final_price_low" in enable_supply_correction:
            new_prices = new_prices.clip(lower=enable_supply_correction[
                "clip_final_price_low"])
        if "clip_final_price_high" in enable_supply_correction:
            new_prices = new_prices.clip(upper=enable_supply_correction[
                "clip_final_price_high"])
        buildings.update_col_from_series(price_col, new_prices)

    vacant_units = buildings[vacant_fname]
    print "    and there are now %d empty units" % vacant_units.sum()
    print "    and %d overfull buildings" % len(vacant_units[vacant_units < 0])
import pandas as pd, numpy as np
import models
import urbansim.sim.simulation as sim

np.random.seed(1)

# Simulation run

##Single-year
# sim.run(["build_networks", "neighborhood_vars", "rsh_simulate", "nrh_simulate", "nrh_simulate2", 
         # "price_vars", "feasibility", "residential_developer", "non_residential_developer"])
         
##Multi-year
sim.run(["build_networks"]) #initialize network accessibility engine
sim.run(["neighborhood_vars", #"scheduled_development_events", #scheduled events and accessibility variables
         "rsh_simulate", "nrh_simulate", "nrh_simulate2",   #price models
         "jobs_transition", "elcm_simulate", "households_transition", "hlcm_luz_simulate", #demand/location models
         "price_vars", "feasibility", "residential_developer", "non_residential_developer", #supply/proforma models
         ], years=[2013, 2014, 2015,])

# Summarize results at MSA level
b = sim.get_table('buildings').to_frame(columns = ['msa_id', 'mgra_id', 'residential_units', 'non_residential_sqft', 'note'])
new_du_by_msa = b[b.note  == 'simulated'].groupby('msa_id').residential_units.sum()
new_nrsf_by_msa = b[b.note  == 'simulated'].groupby('msa_id').non_residential_sqft.sum()
proportion_du_by_msa = new_du_by_msa / new_du_by_msa.sum()
proportion_nrsf_by_msa = new_nrsf_by_msa / new_nrsf_by_msa.sum()

# Write out indicators to calibration directory
proportion_du_by_msa.to_csv('.\\data\\calibration\\msa_du_simulated.csv', header = True)
proportion_nrsf_by_msa.to_csv('.\\data\\calibration\\msa_nrsf_simulated.csv', header = True)
from psrc_urbansim.accessibility.utils import load_network, assign_nodes_to_dataset
import pandas as pd
import os
from urbansim.utils import misc
# this imports all the parcels variables we need
import psrc_urbansim.variables
# this computes the variables
import urbansim.sim.simulation as sim

distances = [500, 1000, 3000]
attributes = ["number_of_households", "number_of_jobs"]
output_file = "parcel_accessibilities.h5"

net = load_network(precompute=distances)
parcels = sim.get_table("parcels")

assign_nodes_to_dataset(parcels, net)

outstore = pd.HDFStore(output_file)

for attr in attributes:
    net.set(parcels["node_ids"], variable=parcels[attr], name=attr)
    for dist in distances:
        res_name = "%s_%s" % (attr, dist)
        sim.add_column("parcels", res_name, net.aggregate(dist, type="sum", decay="linear", name=attr))

outstore["parcels"] = parcels.to_frame()
outstore.close()
def aggregations(settings):
    if "aggregation_tables" not in settings or \
     settings["aggregation_tables"] is None:
        return []
    return [sim.get_table(tbl) for tbl in settings["aggregation_tables"]]
Exemple #33
0
def run_developer(forms, agents, buildings, supply_fname, parcel_size,
                  ave_unit_size, total_units, feasibility, year=None,
                  target_vacancy=.1, form_to_btype_callback=None,
                  add_more_columns_callback=None, max_parcel_size=2000000,
                  residential=True, bldg_sqft_per_job=400.0,
                  min_unit_size=400, remove_developed_buildings=True,
                  unplace_agents=['households', 'jobs']):
    """
    Run the developer model to pick and build buildings

    Parameters
    ----------
    forms : string or list of strings
        Passed directly dev.pick
    agents : DataFrame Wrapper
        Used to compute the current demand for units/floorspace in the area
    buildings : DataFrame Wrapper
        Used to compute the current supply of units/floorspace in the area
    supply_fname : string
        Identifies the column in buildings which indicates the supply of
        units/floorspace
    parcel_size : Series
        Passed directly to dev.pick
    ave_unit_size : Series
        Passed directly to dev.pick - average residential unit size
    total_units : Series
        Passed directly to dev.pick - total current residential_units /
        job_spaces
    feasibility : DataFrame Wrapper
        The output from feasibility above (the table called 'feasibility')
    year : int
        The year of the simulation - will be assigned to 'year_built' on the
        new buildings
    target_vacancy : float
        The target vacancy rate - used to determine how much to build
    form_to_btype_callback : function
        Will be used to convert the 'forms' in the pro forma to
        'building_type_id' in the larger model
    add_more_columns_callback : function
        Takes a dataframe and returns a dataframe - is used to make custom
        modifications to the new buildings that get added
    max_parcel_size : float
        Passed directly to dev.pick - max parcel size to consider
    min_unit_size : float
        Passed directly to dev.pick - min unit size that is valid
    residential : boolean
        Passed directly to dev.pick - switches between adding/computing
        residential_units and job_spaces
    bldg_sqft_per_job : float
        Passed directly to dev.pick - specified the multiplier between
        floor spaces and job spaces for this form (does not vary by parcel
        as ave_unit_size does)
    remove_redeveloped_buildings : optional, boolean (default True)
        Remove all buildings on the parcels which are being developed on
    unplace_agents : optional : list of strings (default ['households', 'jobs'])
        For all tables in the list, will look for field building_id and set
        it to -1 for buildings which are removed - only executed if
        remove_developed_buildings is true

    Returns
    -------
    Writes the result back to the buildings table and returns the new
    buildings with available debugging information on each new building
    """

    dev = developer.Developer(feasibility.to_frame())

    target_units = dev.\
        compute_units_to_build(len(agents),
                               buildings[supply_fname].sum(),
                               target_vacancy)

    print "{:,} feasible buildings before running developer".format(
          len(dev.feasibility))

    new_buildings = dev.pick(forms,
                             target_units,
                             parcel_size,
                             ave_unit_size,
                             total_units,
                             max_parcel_size=max_parcel_size,
                             min_unit_size=min_unit_size,
                             drop_after_build=True,
                             residential=residential,
                             bldg_sqft_per_job=bldg_sqft_per_job)

    sim.add_table("feasibility", dev.feasibility)

    if new_buildings is None:
        return

    if len(new_buildings) == 0:
        return new_buildings

    if year is not None:
        new_buildings["year_built"] = year

    if not isinstance(forms, list):
        # form gets set only if forms is a list
        new_buildings["form"] = forms

    if form_to_btype_callback is not None:
        new_buildings["building_type_id"] = new_buildings.\
            apply(form_to_btype_callback, axis=1)

    new_buildings["stories"] = new_buildings.stories.apply(np.ceil)

    ret_buildings = new_buildings
    if add_more_columns_callback is not None:
        new_buildings = add_more_columns_callback(new_buildings)

    print "Adding {:,} buildings with {:,} {}".\
        format(len(new_buildings),
               int(new_buildings[supply_fname].sum()),
               supply_fname)

    print "{:,} feasible buildings after running developer".format(
          len(dev.feasibility))

    old_buildings = buildings.to_frame(buildings.local_columns)
    new_buildings = new_buildings[buildings.local_columns]

    if remove_developed_buildings:
        redev_buildings = old_buildings.parcel_id.isin(new_buildings.parcel_id)
        l = len(old_buildings)
        drop_buildings = old_buildings[redev_buildings]
        old_buildings = old_buildings[np.logical_not(redev_buildings)]
        l2 = len(old_buildings)
        if l2-l > 0:
            print "Dropped {} buildings because they were redeveloped".\
                format(l2-l)

        for tbl in unplace_agents:
            agents = sim.get_table(tbl)
            agents = agents.to_frame(agents.local_columns)
            displaced_agents = agents.building_id.isin(drop_buildings.index)
            print "Unplaced {} before: {}".format(tbl, len(agents.query(
                                                  "building_id == -1")))
            agents.building_id[displaced_agents] = -1
            print "Unplaced {} after: {}".format(tbl, len(agents.query(
                                                 "building_id == -1")))
            sim.add_table(tbl, agents)

    all_buildings = dev.merge(old_buildings, new_buildings)

    sim.add_table("buildings", all_buildings)

    return ret_buildings
from flask import Flask, jsonify
from flask.ext.cors import CORS 
import pandas as pd
import urbansim.sim.simulation as sim

app = Flask(__name__)
app.debug = True
cors = CORS(app)

MAX_PARCELS_RETURNED = 5000

print "Loading"

store = pd.HDFStore('data/bayarea_v3.h5')

parcels = sim.get_table('parcels').to_frame()
buildings = sim.get_table('buildings').to_frame()
#households = sim.get_table('households').to_frame()
#jobs = sim.get_table('jobs').to_frame()
zoning = sim.get_table('zoning_baseline').to_frame()

print "Ready"

@app.route('/extract/<query>')
def get_data(query):

    print "Got query:", query

    #global parcels, buildings, households, jobs, zoning_baseline
    global parcels, buildings, zoning_baseline
Exemple #35
0
def run_developer(forms, agents, buildings, buildings_all, supply_fname, parcel_size,
                  ave_unit_size, total_units, feasibility, year=None,
                  target_vacancy=.1, form_to_btype_callback=None,
                  add_more_columns_callback=None, max_parcel_size=34647265,
                  residential=True, bldg_sqft_per_job=400.0,
                  min_unit_size=400, remove_developed_buildings=True,
                  unplace_agents=['households', 'jobs']):
    """
    Run the developer model to pick and build buildings

    Parameters
    ----------
    forms : string or list of strings
        Passed directly dev.pick
    agents : DataFrame Wrapper
        Used to compute the current demand for units/floorspace in the area
    buildings : DataFrame Wrapper
        Used to compute the current supply of units/floorspace in the area
    buildings_all:
        Buildings for the entire region, used to write back to buildings table
    supply_fname : string
        Identifies the column in buildings which indicates the supply of
        units/floorspace
    parcel_size : Series
        Passed directly to dev.pick
    ave_unit_size : Series
        Passed directly to dev.pick - average residential unit size
    total_units : Series
        Passed directly to dev.pick - total current residential_units /
        job_spaces
    feasibility : DataFrame Wrapper
        The output from feasibility above (the table called 'feasibility')
    year : int
        The year of the simulation - will be assigned to 'year_built' on the
        new buildings
    target_vacancy : float
        The target vacancy rate - used to determine how much to build
    form_to_btype_callback : function
        Will be used to convert the 'forms' in the pro forma to
        'building_type_id' in the larger model
    add_more_columns_callback : function
        Takes a dataframe and returns a dataframe - is used to make custom
        modifications to the new buildings that get added
    max_parcel_size : float
        Passed directly to dev.pick - max parcel size to consider
    min_unit_size : float
        Passed directly to dev.pick - min unit size that is valid
    residential : boolean
        Passed directly to dev.pick - switches between adding/computing
        residential_units and job_spaces
    bldg_sqft_per_job : float
        Passed directly to dev.pick - specified the multiplier between
        floor spaces and job spaces for this form (does not vary by parcel
        as ave_unit_size does)
    remove_redeveloped_buildings : optional, boolean (default True)
        Remove all buildings on the parcels which are being developed on
    unplace_agents : optional : list of strings (default ['households', 'jobs'])
        For all tables in the list, will look for field building_id and set
        it to -1 for buildings which are removed - only executed if
        remove_developed_buildings is true

    Returns
    -------
    Writes the result back to the buildings table and returns the new
    buildings with available debugging information on each new building
    """

    dev = developer.Developer(feasibility.to_frame())
    #dev = WFRCDeveloper.WFRCDeveloper(feasibility.to_frame())

    target_units = dev.\
        compute_units_to_build(len(agents),
                               buildings[supply_fname].sum(),
                               target_vacancy)

    print "{:,} feasible buildings before running developer".format(
          len(dev.feasibility))

    new_buildings = dev.pick(forms,
                             target_units,
                             parcel_size,
                             ave_unit_size,
                             total_units,
                             max_parcel_size=max_parcel_size,
                             min_unit_size=min_unit_size,
                             drop_after_build=True,
                             residential=residential,
                             bldg_sqft_per_job=bldg_sqft_per_job)

    sim.add_table("feasibility", dev.feasibility)
    year = sim.get_injectable('year')
    if new_buildings is None:
        return

    if len(new_buildings) == 0:
        return new_buildings
    
    if not isinstance(forms, list):
        # form gets set only if forms is a list
        new_buildings["form"] = forms

    if form_to_btype_callback is not None:
        new_buildings["building_type_id"] = new_buildings.\
            apply(form_to_btype_callback, axis=1)

    new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
    new_buildings["note"] = "simulated"
    
    ret_buildings = new_buildings
    if add_more_columns_callback is not None:
        new_buildings = add_more_columns_callback(new_buildings)
        
    if year is not None:
        new_buildings["year_built"] = year
    
    print "Adding {:,} buildings with {:,} {}".\
        format(len(new_buildings),
               int(new_buildings[supply_fname].sum()),
               supply_fname)

    print "{:,} feasible buildings after running developer".format(
          len(dev.feasibility))

    old_buildings = buildings.to_frame(buildings.local_columns)
    old_buildings_all = buildings_all.to_frame(buildings.local_columns)
    new_buildings = new_buildings[buildings.local_columns]
    
    if remove_developed_buildings:
        redev_buildings = old_buildings.parcel_id.isin(new_buildings.parcel_id)
        redev_buildings_all = old_buildings_all.parcel_id.isin(new_buildings.parcel_id)
        l = len(old_buildings)
        drop_buildings = old_buildings[redev_buildings]
        drop_buildings_all = old_buildings_all[redev_buildings_all]
        old_buildings = old_buildings[np.logical_not(redev_buildings)]
        old_buildings_all = old_buildings_all[np.logical_not(redev_buildings_all)]
        l2 = len(old_buildings)
        print "before dropped l:" + str(l)
        print "after dropped l2: " + str(l2)
        #print redev_buildings
        #print drop_buildings
        if l2-l > 0:
            print "Dropped {} buildings because they were redeveloped".\
                format(l2-l)

        for tbl in unplace_agents:
            agents = sim.get_table(tbl)
            agents = agents.to_frame(agents.local_columns)
            #displaced_agents = agents.building_id.isin(drop_buildings.index)
            displaced_agents = agents.building_id.isin(drop_buildings_all.index)
            print "Unplaced {} before: {}".format(tbl, len(agents.query(
                                                  "building_id == -1")))
            agents.building_id[displaced_agents] = -1
            print "Unplaced {} after: {}".format(tbl, len(agents.query(
                                                 "building_id == -1")))
            sim.add_table(tbl, agents)
    
    all_buildings = dev.merge(old_buildings_all, new_buildings)
    
    sim.add_table("buildings", all_buildings)

    return ret_buildings
Exemple #36
0
    def run_proforma_lookup(parcels,
                            fees,
                            pf,
                            use,
                            form,
                            residential_to_yearly,
                            parcel_filter=None):
        if parcel_filter:
            parcels = parcels.query(parcel_filter)
        # add prices for each use (rents).  Apply fees
        parcels[use] = misc.reindex(
            sim.get_table('nodes')[use],
            sim.get_table('parcels').node_id) - fees

        #Calibration shifters
        calibration_shifters = pd.read_csv(
            '.\\data\\calibration\\msa_shifters.csv').set_index(
                'msa_id').to_dict()

        if use == 'residential':
            shifter_name = 'res_price_shifter'
        else:
            shifter_name = 'nonres_price_shifter'
        parcels[shifter_name] = 1.0
        shifters = calibration_shifters[shifter_name]
        for msa_id in shifters.keys():
            shift = shifters[msa_id]
            parcels[shifter_name][parcels.msa_id == msa_id] = shift

        parcels[use] = parcels[use] * parcels[shifter_name]

        #LUZ shifter
        if use == 'residential':
            target_luz = pd.read_csv(
                '.\\data\\calibration\\target_luz.csv').values.flatten()
            luz_shifter = pd.read_csv(
                '.\\data\\calibration\\luz_du_shifter.csv').values[0][0]
            parcels[use][parcels.luz_id.isin(target_luz)] = parcels[use][
                parcels.luz_id.isin(target_luz)] * luz_shifter

        # convert from cost to yearly rent
        if residential_to_yearly:
            parcels[use] *= pf.config.cap_rate

        # Price minimum if hedonic predicts outlier
        parcels[use][parcels[use] <= .5] = .5
        parcels[use][parcels[use].isnull()] = .5

        print "Describe of the yearly rent by use"
        print parcels[use].describe()
        allowed = parcel_use_allowed_callback(form).loc[parcels.index]
        feasibility = pf.lookup(form,
                                parcels[allowed],
                                only_built=True,
                                pass_through=[])

        if use == 'residential':

            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                target_units = residential_space_targets()[form]
                #Calculate number of profitable units
                d = {}
                d[form] = feasibility
                feas = pd.concat(d.values(), keys=d.keys(), axis=1)
                dev = developer.Developer(feas)
                profitable_units = run_developer(dev,
                                                 form,
                                                 target_units,
                                                 get_year(),
                                                 build=False)

                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (
                    profitable_units, target_units)

                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])

                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    price_scaling_factor += .1
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])
                    return feasibility

            feasibility = iter_feasibility(feasibility, 1.0)

        elif use != 'residential':

            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                targets = non_residential_space_targets()
                target_units = targets[form] / 400
                #Calculate number of profitable units
                feasibility['current_units'] = parcels.total_job_spaces
                feasibility["parcel_size"] = parcels.parcel_size
                feasibility = feasibility[feasibility.parcel_size < 200000]
                feasibility['job_spaces'] = np.round(
                    feasibility.non_residential_sqft / 400.0)
                feasibility[
                    'net_units'] = feasibility.job_spaces - feasibility.current_units
                feasibility.net_units = feasibility.net_units.fillna(0)
                profitable_units = int(feasibility.net_units.sum())
                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (
                    profitable_units, target_units)

                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])

                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    return feasibility

            feasibility = iter_feasibility(feasibility, 1.0)

        print len(feasibility)
        return feasibility
Exemple #37
0
    def run_proforma_lookup(parcels, fees, pf, use, form, residential_to_yearly, parcel_filter = None):
        if parcel_filter:
            parcels = parcels.query(parcel_filter)
        # add prices for each use (rents).  Apply fees
        parcels[use] = misc.reindex(sim.get_table('nodes')[use], sim.get_table('parcels').node_id) - fees
        
        #Calibration shifters
        calibration_shifters = pd.read_csv('.\\data\\calibration\\msa_shifters.csv').set_index('msa_id').to_dict()
        
        if use == 'residential':
            shifter_name = 'res_price_shifter'
        else:
            shifter_name = 'nonres_price_shifter'
        parcels[shifter_name] = 1.0
        shifters = calibration_shifters[shifter_name]
        for msa_id in shifters.keys():
            shift = shifters[msa_id]
            parcels[shifter_name][parcels.msa_id == msa_id] = shift
            
        parcels[use] = parcels[use] * parcels[shifter_name]
        
        #LUZ shifter
        if use == 'residential':
            target_luz = pd.read_csv('.\\data\\calibration\\target_luz.csv').values.flatten()
            luz_shifter = pd.read_csv('.\\data\\calibration\\luz_du_shifter.csv').values[0][0]
            parcels[use][parcels.luz_id.isin(target_luz)] = parcels[use][parcels.luz_id.isin(target_luz)] * luz_shifter
            
        # convert from cost to yearly rent
        if residential_to_yearly:
            parcels[use] *= pf.config.cap_rate
            
        # Price minimum if hedonic predicts outlier
        parcels[use][parcels[use] <= .5] = .5
        parcels[use][parcels[use].isnull()] = .5

        print "Describe of the yearly rent by use"
        print parcels[use].describe()
        allowed = parcel_use_allowed_callback(form).loc[parcels.index]
        feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                    pass_through=[])
                                    
        if use == 'residential':
            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                target_units = residential_space_targets()[form]
                #Calculate number of profitable units
                d = {}
                d[form] = feasibility
                feas = pd.concat(d.values(), keys=d.keys(), axis=1)
                dev = developer.Developer(feas)
                profitable_units = run_developer(dev, form, target_units, get_year(), build = False)

                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (profitable_units, target_units)
                
                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                                        
                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    price_scaling_factor += .1
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                    return feasibility
            feasibility = iter_feasibility(feasibility, 1.0)
            
        elif use != 'residential':
            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                targets = non_residential_space_targets()
                target_units = targets[form]/400
                #Calculate number of profitable units
                feasibility['current_units'] = parcels.total_job_spaces
                feasibility["parcel_size"] = parcels.parcel_size
                feasibility = feasibility[feasibility.parcel_size < 200000]
                feasibility['job_spaces'] = np.round(feasibility.non_residential_sqft / 400.0)
                feasibility['net_units'] = feasibility.job_spaces - feasibility.current_units
                feasibility.net_units = feasibility.net_units.fillna(0)
                profitable_units = int(feasibility.net_units.sum())
                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (profitable_units, target_units)
                
                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                                        
                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    return feasibility
            feasibility = iter_feasibility(feasibility, 1.0)

        print len(feasibility)
        return feasibility
Exemple #38
0
def feasibility(parcels, settings,
                parcel_sales_price_sqft_func,
                parcel_is_allowed_func):
    # Fee table preprocessing
    fee_schedule = sim.get_table('fee_schedule').to_frame()
    parcel_fee_schedule = sim.get_table('parcel_fee_schedule').to_frame()
    parcels = sim.get_table('parcels').to_frame(columns = ['zoning_id','development_type_id'])
    fee_schedule = fee_schedule.groupby(['fee_schedule_id', 'development_type_id']).development_fee_per_unit_space_initial.mean().reset_index()

    parcel_use_allowed_callback = sim.get_injectable('parcel_is_allowed_func')

    def run_proforma_lookup(parcels, fees, pf, use, form, residential_to_yearly, parcel_filter = None):
        if parcel_filter:
            parcels = parcels.query(parcel_filter)
        # add prices for each use (rents).  Apply fees
        parcels[use] = misc.reindex(sim.get_table('nodes')[use], sim.get_table('parcels').node_id) - fees
        
        #Calibration shifters
        calibration_shifters = pd.read_csv('.\\data\\calibration\\msa_shifters.csv').set_index('msa_id').to_dict()
        
        if use == 'residential':
            shifter_name = 'res_price_shifter'
        else:
            shifter_name = 'nonres_price_shifter'
        parcels[shifter_name] = 1.0
        shifters = calibration_shifters[shifter_name]
        for msa_id in shifters.keys():
            shift = shifters[msa_id]
            parcels[shifter_name][parcels.msa_id == msa_id] = shift
            
        parcels[use] = parcels[use] * parcels[shifter_name]
        
        #LUZ shifter
        if use == 'residential':
            target_luz = pd.read_csv('.\\data\\calibration\\target_luz.csv').values.flatten()
            luz_shifter = pd.read_csv('.\\data\\calibration\\luz_du_shifter.csv').values[0][0]
            parcels[use][parcels.luz_id.isin(target_luz)] = parcels[use][parcels.luz_id.isin(target_luz)] * luz_shifter
            
        # convert from cost to yearly rent
        if residential_to_yearly:
            parcels[use] *= pf.config.cap_rate
            
        # Price minimum if hedonic predicts outlier
        parcels[use][parcels[use] <= .5] = .5
        parcels[use][parcels[use].isnull()] = .5

        print "Describe of the yearly rent by use"
        print parcels[use].describe()
        allowed = parcel_use_allowed_callback(form).loc[parcels.index]
        feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                    pass_through=[])
                                    
        if use == 'residential':
            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                target_units = residential_space_targets()[form]
                #Calculate number of profitable units
                d = {}
                d[form] = feasibility
                feas = pd.concat(d.values(), keys=d.keys(), axis=1)
                dev = developer.Developer(feas)
                profitable_units = run_developer(dev, form, target_units, get_year(), build = False)

                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (profitable_units, target_units)
                
                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                                        
                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    price_scaling_factor += .1
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                    return feasibility
            feasibility = iter_feasibility(feasibility, 1.0)
            
        elif use != 'residential':
            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                targets = non_residential_space_targets()
                target_units = targets[form]/400
                #Calculate number of profitable units
                feasibility['current_units'] = parcels.total_job_spaces
                feasibility["parcel_size"] = parcels.parcel_size
                feasibility = feasibility[feasibility.parcel_size < 200000]
                feasibility['job_spaces'] = np.round(feasibility.non_residential_sqft / 400.0)
                feasibility['net_units'] = feasibility.job_spaces - feasibility.current_units
                feasibility.net_units = feasibility.net_units.fillna(0)
                profitable_units = int(feasibility.net_units.sum())
                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (profitable_units, target_units)
                
                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form, parcels[allowed], only_built=True,
                                        pass_through=[])
                                        
                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    return feasibility
            feasibility = iter_feasibility(feasibility, 1.0)

        print len(feasibility)
        return feasibility

    def residential_proforma(form, devtype_id, parking_rate):
        print form
        use = 'residential'
        parcels = sim.get_table('parcels').to_frame()
        
        residential_to_yearly = True
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use : 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [True]
        pfc.parking_rates = {use : parking_rate}
        pfc.costs = {use : [170.0, 190.0, 210.0, 240.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id == devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule, fee_schedule_devtype, left_on = 'fee_schedule_id', right_on = 'fee_schedule_id')
        parcel_fee_schedule_devtype['development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial*parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby('parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data = parcel_fees_processed, index = parcels.index).fillna(0)

        pf = sqftproforma.SqFtProForma(pfc)
        
        return run_proforma_lookup(parcels, fees, pf, use, form, residential_to_yearly, parcel_filter = parcel_filter)

    def nonresidential_proforma(form, devtype_id, use, parking_rate):
        print form
        parcels = sim.get_table('parcels').to_frame()
        
        residential_to_yearly = False
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use : 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [False]
        pfc.parking_rates = {use : parking_rate}
        if use == 'retail':
            pfc.costs = {use : [160.0, 175.0, 200.0, 230.0]}
        elif use == 'industrial':
            pfc.costs = {use : [140.0, 175.0, 200.0, 230.0]}
        else: #office
            pfc.costs = {use : [160.0, 175.0, 200.0, 230.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id == devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule, fee_schedule_devtype, left_on = 'fee_schedule_id', right_on = 'fee_schedule_id')
        parcel_fee_schedule_devtype['development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial*parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby('parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data = parcel_fees_processed, index = parcels.index).fillna(0)
        
        pf = sqftproforma.SqFtProForma(pfc)
        fees = fees*pf.config.cap_rate

        return run_proforma_lookup(parcels, fees, pf, use, form, residential_to_yearly, parcel_filter = parcel_filter)

    d = {}

    ##SF DETACHED proforma (devtype 19)
    form = 'sf_detached'
    devtype_id = 19
    d[form] = residential_proforma(form, devtype_id, parking_rate = 1.0)

    ##SF ATTACHED proforma (devtype 20)
    form = 'sf_attached'
    devtype_id = 20
    d[form] = residential_proforma(form, devtype_id, parking_rate = 1.0)

    ##MF_RESIDENTIAL proforma (devtype 21)
    form = 'mf_residential'
    devtype_id = 21
    d[form] = residential_proforma(form, devtype_id, parking_rate = 1.0)

    ##OFFICE (devtype 4)
    form = 'office'
    devtype_id = 4
    d[form] = nonresidential_proforma(form, devtype_id, form, parking_rate = 1.0)

    ##RETAIL (devtype 5)
    form = 'retail'
    devtype_id = 5
    d[form] = nonresidential_proforma(form, devtype_id, form, parking_rate = 2.0)

    ##LIGHT INDUSTRIAL (devtype 2)
    form = 'light_industrial'
    devtype_id = 2
    d[form] = nonresidential_proforma(form, devtype_id, 'industrial', parking_rate = .6)

    ##HEAVY INDUSTRIAL (devtype 3)
    form = 'heavy_industrial'
    devtype_id = 3
    d[form] = nonresidential_proforma(form, devtype_id, 'industrial', parking_rate = .6)

    far_predictions = pd.concat(d.values(), keys=d.keys(), axis=1)
    sim.add_table("feasibility", far_predictions)
    (options, args) = parser.parse_args()    
    geo = options.geo
    port = options.port
       
    for tbl in ["zones", "fazes", "tractcity"]:
        if tbl in tables[geo]:
            variables2[tbl] = common_vars2 
        
    import psrc_urbansim.models
    import urbansim.sim.simulation as sim
    from psrc_urbansim.utils import change_store
    change_store(data_file)
    #import psrc_urbansim.accessibility.variables
    
    # create a dictionary of pandas frames
    d = {tbl: sim.get_table(tbl).to_frame() for tbl in tables[geo]}
    # remove unwanted columns
    for tbl, cols in columns_to_remove.iteritems():
        if tbl in d.keys():
            d[tbl].drop(cols, axis=1, inplace=True)
            
    change_store(data_file2)
    sim.clear_cache()
    #import urbansim.sim.simulation as sim
    #import psrc_urbansim.accessibility.variables
    for tbl in variables2.keys():
        d2 = sim.get_table(tbl).to_frame(columns=variables2[tbl])
        d2.columns = map(lambda x: x + "_2", d2.columns)
        d[tbl] = pd.merge(d[tbl], d2, left_index=True, right_index=True)

    # add the id column since the join does not work if the id is an index
Exemple #40
0
def parcel_average_price(use):
    return misc.reindex(sim.get_table('zones_prices')[use],
                        sim.get_table('parcels').zone_id)
Exemple #41
0
def run_developer(dev, residential_form, target, year, build = False):
    old_buildings = sim.get_table('buildings').to_frame(sim.get_table('buildings').local_columns)
    parcels = sim.get_table('parcels')
    print 'Residential unit target for %s is %s.' % (residential_form, target)
    if target > 0:
        print residential_form
        drop_after_build = True if build else False
        new_buildings = dev.pick(residential_form,
                                 target,
                                 parcels.parcel_size,
                                 parcels.ave_sqft_per_unit,
                                 parcels.total_residential_units,
                                 max_parcel_size=2000000,
                                 min_unit_size=400,
                                 drop_after_build=True,
                                 residential=True,
                                 bldg_sqft_per_job=400.0)
        if build:
            print 'Constructed %s %s buildings, totaling %s new residential_units' % (len(new_buildings), residential_form, new_buildings.residential_units.sum())
            overshoot = new_buildings.residential_units.sum() - target
            print 'Overshot target by %s units' % (overshoot)
            print 'Biggest development has %s units' % new_buildings.residential_units.max()
            if overshoot > 1:
                to_remove = new_buildings[['parcel_id', 'residential_units']].copy()
                to_remove = to_remove[to_remove.residential_units < 4].set_index('parcel_id')
                to_remove = to_remove.sort('residential_units')
                to_remove['du_cumsum'] = to_remove.residential_units.cumsum()
                idx_to_remove = np.searchsorted(to_remove.du_cumsum, overshoot)
                parcel_ids_to_remove = to_remove.index.values[:(idx_to_remove[0] + 1)]
                print 'Removing %s units to match target' % to_remove.residential_units.values[:(idx_to_remove[0] + 1)].sum()
                new_buildings = new_buildings[~new_buildings.parcel_id.isin(parcel_ids_to_remove)]
            new_buildings["year_built"] = year
            new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
            if residential_form == 'sf_detached':
                new_buildings['development_type_id'] = 19
            elif residential_form == 'sf_attached':
                new_buildings['development_type_id'] = 20
            elif residential_form == 'mf_residential':
                new_buildings['development_type_id'] = 21
            new_buildings['improvement_value'] = 0
            new_buildings['note'] = 'simulated'
            new_buildings['res_price_per_sqft'] = 0.0
            new_buildings['nonres_rent_per_sqft'] = 0.0
            new_buildings = new_buildings[old_buildings.columns]
            
            # Remove redeveloped buildings
            redev_buildings = old_buildings.parcel_id.isin(new_buildings.parcel_id)
            l = len(old_buildings)
            drop_buildings = old_buildings[redev_buildings]
            old_buildings = old_buildings[np.logical_not(redev_buildings)]
            l2 = len(old_buildings)
            if l2-l > 0:
                print "Dropped {} buildings because they were redeveloped".\
                    format(l2-l)

            for tbl in ['households', 'jobs']:
                agents = sim.get_table(tbl)
                agents = agents.to_frame(agents.local_columns)
                displaced_agents = agents.building_id.isin(drop_buildings.index)
                print "Unplaced {} before: {}".format(tbl, len(agents.query(
                                                      "building_id == -1")))
                agents.building_id[displaced_agents] = -1
                print "Unplaced {} after: {}".format(tbl, len(agents.query(
                                                     "building_id == -1")))
                sim.add_table(tbl, agents)
            
            # Update buildings table
            all_buildings = dev.merge(old_buildings, new_buildings)
            sim.add_table("buildings", all_buildings)
        
        else:
            return new_buildings.residential_units.sum()
Exemple #42
0
def parcel_average_price(use):
    return misc.reindex(
        sim.get_table('zones_prices')[use],
        sim.get_table('parcels').zone_id)
Exemple #43
0
def residential_developer(parcels):
    feas = sim.get_table('feasibility').to_frame()
    
    year = get_year()
              
    targets = residential_space_targets()
    
    print "{:,} feasible buildings before running developer".format(
          len(feas))
          
    # LUZ overrides, if applicable
    p = sim.get_table('parcels').to_frame(columns = ['luz_id', 'total_residential_units', 'total_sfd_du', 'total_sfa_du', 'total_mfr_du'])
    feas['luz_id'] = p.luz_id
    overrides = pd.read_csv('./data/overrides/luz_overrides.csv')
    overrides = overrides[overrides.year == year]
    controlled_luzes = np.unique(overrides.luz_id)
    
    if len(overrides) > 0:
        
        #Record existing LUZ values
        existing_du = p.groupby('luz_id').total_residential_units.sum()
        existing_sfd_du = p.groupby('luz_id').total_sfd_du.sum()
        existing_sfa_du = p.groupby('luz_id').total_sfa_du.sum()
        existing_mfr_du = p.groupby('luz_id').total_mfr_du.sum()
        existing_df = pd.DataFrame({'existing_du':existing_du,
                           19:existing_sfd_du,
                           20:existing_sfa_du,
                           21:existing_mfr_du}).fillna(0)   
        mini_feases = []
        for luz in controlled_luzes:
            overrides_subset = overrides[overrides.luz_id == luz]
            for devtype in np.unique(overrides_subset.development_type_id):
                target = overrides_subset.target[overrides_subset.development_type_id == devtype].values[0]
                print 'LUZ %s has a DU override target for development type %s of %s.' % (luz, devtype, target)
                existing_du = existing_df[devtype][existing_df.index == luz].values[0]
                print '    There are %s existing units of this type in this LUZ' % existing_du
                difference = target - existing_du
                if difference > 0:
                    feas_subset = feas[feas.luz_id == luz]
                    if len(feas_subset) > 0:
                        if devtype == 19:  residential_form = 'sf_detached'
                        if devtype == 20:  residential_form = 'sf_attached'
                        if devtype == 21:  residential_form = 'mf_residential'
                        feasible_units = feas_subset[residential_form].net_units.sum()
                        if feasible_units > 0:
                            if difference > feasible_units:
                                reallocate = difference - feasible_units
                                print '    Moving %s units to the uncontrolled bucket because only part of the target difference was feasible' % reallocate
                                targets[residential_form] = targets[residential_form] + reallocate
                            dev_luz = developer.Developer(feas_subset)
                            run_developer(dev_luz, residential_form, difference, year, build = True)
                            #Store the unbuilt feasible parcels and add back into feasibility later
                            mini_feases.append(dev_luz.feasibility)
                        else:
                            print '    No profitable projects'
    
    #Uncontrolled LUZs
    print 'Running Developer for uncontrolled LUZs'
    feas = feas[~feas.luz_id.isin(controlled_luzes)]
    dev = developer.Developer(feas)
    for residential_form in ['mf_residential', 'sf_attached', 'sf_detached', ]:
        if residential_form in targets.keys():
            target = targets[residential_form]
            run_developer(dev, residential_form, target, year, build = True)

    #Remaining feasible parcels back to feas after running controlled LUZs so that nonres can be built on these parcels if multiple forms allowed and not already built on
    if len(overrides) > 0:
        feas_list = mini_feases.append(dev.feasibility)
        feas = pd.concat(mini_feases)
        sim.add_table("feasibility", feas)
    else:
        sim.add_table("feasibility", dev.feasibility)
    
    b = sim.get_table('buildings')
    b = b.to_frame(b.local_columns)
    b_sim = b[(b.note == 'simulated') * (b.year_built == year)]
    print 'Simulated DU: %s' % b_sim.residential_units.sum()
    print 'Target DU: %s' % (targets['sf_detached'] + targets['mf_residential'] + targets['sf_attached']) #Note:  includes negative when target is lower.
Exemple #44
0
def lcm_simulate(cfg, choosers, buildings, join_tbls, out_fname,
                 supply_fname, vacant_fname,
                 enable_supply_correction=None):
    """
    Simulate the location choices for the specified choosers

    Parameters
    ----------
    cfg : string
        The name of the yaml config file from which to read the location
        choice model
    choosers : DataFrameWrapper
        A dataframe of agents doing the choosing
    buildings : DataFrameWrapper
        A dataframe of buildings which the choosers are locating in and which
        have a supply
    join_tbls : list of strings
        A list of land use dataframes to give neighborhood info around the
        buildings - will be joined to the buildings using existing broadcasts.
    out_fname : string
        The column name to write the simulated location to
    supply_fname : string
        The string in the buildings table that indicates the amount of
        available units there are for choosers, vacant or not
    vacant_fname : string
        The string in the buildings table that indicates the amount of vacant
        units there will be for choosers
    enable_supply_correction : Python dict
        Should contain keys "price_col" and "submarket_col" which are set to
        the column names in buildings which contain the column for prices and
        an identifier which segments buildings into submarkets
    """
    cfg = misc.config(cfg)

    choosers_df = to_frame(choosers, [], cfg, additional_columns=[out_fname])

    additional_columns = [supply_fname, vacant_fname]
    if enable_supply_correction is not None and \
            "submarket_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["submarket_col"]]
    if enable_supply_correction is not None and \
            "price_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["price_col"]]
    locations_df = to_frame(buildings, join_tbls, cfg,
                            additional_columns=additional_columns)

    available_units = buildings[supply_fname]
    vacant_units = buildings[vacant_fname]

    print "There are %d total available units" % available_units.sum()
    print "    and %d total choosers" % len(choosers)
    print "    but there are %d overfull buildings" % \
          len(vacant_units[vacant_units < 0])

    vacant_units = vacant_units[vacant_units > 0]

    # sometimes there are vacant units for buildings that are not in the
    # locations_df, which happens for reasons explained in the warning below
    indexes = np.repeat(vacant_units.index.values,
                        vacant_units.values.astype('int'))
    isin = pd.Series(indexes).isin(locations_df.index)
    missing = len(isin[isin == False])
    indexes = indexes[isin.values]
    units = locations_df.loc[indexes].reset_index()
    check_nas(units)

    print "    for a total of %d temporarily empty units" % vacant_units.sum()
    print "    in %d buildings total in the region" % len(vacant_units)

    if missing > 0:
        print "WARNING: %d indexes aren't found in the locations df -" % \
            missing
        print "    this is usually because of a few records that don't join "
        print "    correctly between the locations df and the aggregations tables"

    movers = choosers_df[choosers_df[out_fname] == -1]
    print "There are %d total movers for this LCM" % len(movers)

    if enable_supply_correction is not None:
        assert isinstance(enable_supply_correction, dict)
        assert "price_col" in enable_supply_correction
        price_col = enable_supply_correction["price_col"]
        assert "submarket_col" in enable_supply_correction
        submarket_col = enable_supply_correction["submarket_col"]

        lcm = yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)

        if enable_supply_correction.get("warm_start", False) is True:
            raise NotImplementedError()

        multiplier_func = enable_supply_correction.get("multiplier_func", None)
        if multiplier_func is not None:
            multiplier_func = sim.get_injectable(multiplier_func)

        kwargs = enable_supply_correction.get('kwargs', {})
        new_prices, submarkets_ratios = supply_and_demand(
            lcm,
            movers,
            units,
            submarket_col,
            price_col,
            base_multiplier=None,
            multiplier_func=multiplier_func,
            **kwargs)

        # we will only get back new prices for those alternatives
        # that pass the filter - might need to specify the table in
        # order to get the complete index of possible submarkets
        submarket_table = enable_supply_correction.get("submarket_table", None)
        if submarket_table is not None:
            submarkets_ratios = submarkets_ratios.reindex(
                sim.get_table(submarket_table).index).fillna(1)
            # write final shifters to the submarket_table for use in debugging
            sim.get_table(submarket_table)["price_shifters"] = submarkets_ratios

        print "Running supply and demand"
        print "Simulated Prices"
        print buildings[price_col].describe()
        print "Submarket Price Shifters"
        print submarkets_ratios.describe()
        # we want new prices on the buildings, not on the units, so apply
        # shifters directly to buildings and ignore unit prices
        sim.add_column(buildings.name,
                       price_col+"_hedonic", buildings[price_col])
        new_prices = buildings[price_col] * \
            submarkets_ratios.loc[buildings[submarket_col]].values
        buildings.update_col_from_series(price_col, new_prices)
        print "Adjusted Prices"
        print buildings[price_col].describe()

    if len(movers) > vacant_units.sum():
        print "WARNING: Not enough locations for movers"
        print "    reducing locations to size of movers for performance gain"
        movers = movers.head(vacant_units.sum())

    new_units, _ = yaml_to_class(cfg).predict_from_cfg(movers, units, cfg)

    # new_units returns nans when there aren't enough units,
    # get rid of them and they'll stay as -1s
    new_units = new_units.dropna()

    # go from units back to buildings
    new_buildings = pd.Series(units.loc[new_units.values][out_fname].values,
                              index=new_units.index)

    choosers.update_col_from_series(out_fname, new_buildings)
    _print_number_unplaced(choosers, out_fname)

    if enable_supply_correction is not None:
        new_prices = buildings[price_col]
        if "clip_final_price_low" in enable_supply_correction:
            new_prices = new_prices.clip(lower=enable_supply_correction[
                "clip_final_price_low"])
        if "clip_final_price_high" in enable_supply_correction:
            new_prices = new_prices.clip(upper=enable_supply_correction[
                "clip_final_price_high"])
        buildings.update_col_from_series(price_col, new_prices)

    vacant_units = buildings[vacant_fname]
    print "    and there are now %d empty units" % vacant_units.sum()
    print "    and %d overfull buildings" % len(vacant_units[vacant_units < 0])
Exemple #45
0
def non_residential_developer(parcels):
    feas = sim.get_table('feasibility').to_frame()
    dev = developer.Developer(feas)
    
    print "{:,} feasible buildings before running developer".format(
              len(dev.feasibility))
    
    year = get_year()
    
    targets = non_residential_space_targets()
           
    for non_residential_form in ['heavy_industrial', 'light_industrial', 'retail', 'office']:
        if non_residential_form in targets.keys():
            old_buildings = sim.get_table('buildings').to_frame(sim.get_table('buildings').local_columns)

            target = targets[non_residential_form]
            target = target/400
            print 'Job space target for %s is %s.' % (non_residential_form, target)
            
            if target > 0:
                new_buildings = dev.pick(non_residential_form,
                                         target,
                                         parcels.parcel_size,
                                         parcels.ave_sqft_per_unit,
                                         parcels.total_job_spaces,
                                         max_parcel_size=2000000,
                                         min_unit_size=0,
                                         drop_after_build=True,
                                         residential=False,
                                         bldg_sqft_per_job=400.0)
                
                print 'Constructed %s %s buildings, totaling %s new job spaces.' % (len(new_buildings), non_residential_form, new_buildings.non_residential_sqft.sum()/400)
                
                new_buildings["year_built"] = year
                new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
                if non_residential_form == 'light_industrial':
                    new_buildings['development_type_id'] = 2
                elif non_residential_form == 'heavy_industrial':
                    new_buildings['development_type_id'] = 3
                elif non_residential_form == 'office':
                    new_buildings['development_type_id'] = 4
                elif non_residential_form == 'retail':
                    new_buildings['development_type_id'] = 5
                new_buildings['improvement_value'] = 0
                new_buildings['note'] = 'simulated'
                new_buildings['res_price_per_sqft'] = 0.0
                new_buildings['nonres_rent_per_sqft'] = 0.0
                new_buildings = new_buildings[old_buildings.columns]
                
                # Remove redeveloped buildings
                redev_buildings = old_buildings.parcel_id.isin(new_buildings.parcel_id)
                l = len(old_buildings)
                drop_buildings = old_buildings[redev_buildings]
                old_buildings = old_buildings[np.logical_not(redev_buildings)]
                l2 = len(old_buildings)
                if l2-l > 0:
                    print "Dropped {} buildings because they were redeveloped".\
                        format(l2-l)

                for tbl in ['households', 'jobs']:
                    agents = sim.get_table(tbl)
                    agents = agents.to_frame(agents.local_columns)
                    displaced_agents = agents.building_id.isin(drop_buildings.index)
                    print "Unplaced {} before: {}".format(tbl, len(agents.query(
                                                          "building_id == -1")))
                    agents.building_id[displaced_agents] = -1
                    print "Unplaced {} after: {}".format(tbl, len(agents.query(
                                                         "building_id == -1")))
                    sim.add_table(tbl, agents)
                    
                # Update buildings table
                all_buildings = dev.merge(old_buildings, new_buildings)
                sim.add_table("buildings", all_buildings)
                
    sim.add_table("feasibility", dev.feasibility)
def aggregations(settings):
    if "aggregation_tables" not in settings or \
    	settings["aggregation_tables"] is None:
    	return []
    return [sim.get_table(tbl) for tbl in settings["aggregation_tables"]]
Exemple #47
0
def feasibility(parcels, settings, parcel_sales_price_sqft_func,
                parcel_is_allowed_func):
    # Fee table preprocessing
    fee_schedule = sim.get_table('fee_schedule').to_frame()
    parcel_fee_schedule = sim.get_table('parcel_fee_schedule').to_frame()
    parcels = sim.get_table('parcels').to_frame(
        columns=['zoning_id', 'development_type_id'])
    fee_schedule = fee_schedule.groupby([
        'fee_schedule_id', 'development_type_id'
    ]).development_fee_per_unit_space_initial.mean().reset_index()

    parcel_use_allowed_callback = sim.get_injectable('parcel_is_allowed_func')

    def run_proforma_lookup(parcels,
                            fees,
                            pf,
                            use,
                            form,
                            residential_to_yearly,
                            parcel_filter=None):
        if parcel_filter:
            parcels = parcels.query(parcel_filter)
        # add prices for each use (rents).  Apply fees
        parcels[use] = misc.reindex(
            sim.get_table('nodes')[use],
            sim.get_table('parcels').node_id) - fees

        #Calibration shifters
        calibration_shifters = pd.read_csv(
            '.\\data\\calibration\\msa_shifters.csv').set_index(
                'msa_id').to_dict()

        if use == 'residential':
            shifter_name = 'res_price_shifter'
        else:
            shifter_name = 'nonres_price_shifter'
        parcels[shifter_name] = 1.0
        shifters = calibration_shifters[shifter_name]
        for msa_id in shifters.keys():
            shift = shifters[msa_id]
            parcels[shifter_name][parcels.msa_id == msa_id] = shift

        parcels[use] = parcels[use] * parcels[shifter_name]

        #LUZ shifter
        if use == 'residential':
            target_luz = pd.read_csv(
                '.\\data\\calibration\\target_luz.csv').values.flatten()
            luz_shifter = pd.read_csv(
                '.\\data\\calibration\\luz_du_shifter.csv').values[0][0]
            parcels[use][parcels.luz_id.isin(target_luz)] = parcels[use][
                parcels.luz_id.isin(target_luz)] * luz_shifter

        # convert from cost to yearly rent
        if residential_to_yearly:
            parcels[use] *= pf.config.cap_rate

        # Price minimum if hedonic predicts outlier
        parcels[use][parcels[use] <= .5] = .5
        parcels[use][parcels[use].isnull()] = .5

        print "Describe of the yearly rent by use"
        print parcels[use].describe()
        allowed = parcel_use_allowed_callback(form).loc[parcels.index]
        feasibility = pf.lookup(form,
                                parcels[allowed],
                                only_built=True,
                                pass_through=[])

        if use == 'residential':

            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                target_units = residential_space_targets()[form]
                #Calculate number of profitable units
                d = {}
                d[form] = feasibility
                feas = pd.concat(d.values(), keys=d.keys(), axis=1)
                dev = developer.Developer(feas)
                profitable_units = run_developer(dev,
                                                 form,
                                                 target_units,
                                                 get_year(),
                                                 build=False)

                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (
                    profitable_units, target_units)

                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])

                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    price_scaling_factor += .1
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])
                    return feasibility

            feasibility = iter_feasibility(feasibility, 1.0)

        elif use != 'residential':

            def iter_feasibility(feasibility, price_scaling_factor):
                if price_scaling_factor > 3.0:
                    return feasibility
                # Get targets
                targets = non_residential_space_targets()
                target_units = targets[form] / 400
                #Calculate number of profitable units
                feasibility['current_units'] = parcels.total_job_spaces
                feasibility["parcel_size"] = parcels.parcel_size
                feasibility = feasibility[feasibility.parcel_size < 200000]
                feasibility['job_spaces'] = np.round(
                    feasibility.non_residential_sqft / 400.0)
                feasibility[
                    'net_units'] = feasibility.job_spaces - feasibility.current_units
                feasibility.net_units = feasibility.net_units.fillna(0)
                profitable_units = int(feasibility.net_units.sum())
                print 'Feasibility given current prices/zonining indicates %s profitable units and target of %s' % (
                    profitable_units, target_units)

                if profitable_units < target_units:
                    price_scaling_factor += .1
                    print 'Scaling prices up by factor of %s' % price_scaling_factor
                    parcels[use] = parcels[use] * price_scaling_factor
                    feasibility = pf.lookup(form,
                                            parcels[allowed],
                                            only_built=True,
                                            pass_through=[])

                    return iter_feasibility(feasibility, price_scaling_factor)
                else:
                    return feasibility

            feasibility = iter_feasibility(feasibility, 1.0)

        print len(feasibility)
        return feasibility

    def residential_proforma(form, devtype_id, parking_rate):
        print form
        use = 'residential'
        parcels = sim.get_table('parcels').to_frame()

        residential_to_yearly = True
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use: 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [True]
        pfc.parking_rates = {use: parking_rate}
        pfc.costs = {use: [170.0, 190.0, 210.0, 240.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id ==
                                            devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule,
                                               fee_schedule_devtype,
                                               left_on='fee_schedule_id',
                                               right_on='fee_schedule_id')
        parcel_fee_schedule_devtype[
            'development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial * parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby(
            'parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data=parcel_fees_processed,
                         index=parcels.index).fillna(0)

        pf = sqftproforma.SqFtProForma(pfc)

        return run_proforma_lookup(parcels,
                                   fees,
                                   pf,
                                   use,
                                   form,
                                   residential_to_yearly,
                                   parcel_filter=parcel_filter)

    def nonresidential_proforma(form, devtype_id, use, parking_rate):
        print form
        parcels = sim.get_table('parcels').to_frame()

        residential_to_yearly = False
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use: 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [False]
        pfc.parking_rates = {use: parking_rate}
        if use == 'retail':
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}
        elif use == 'industrial':
            pfc.costs = {use: [140.0, 175.0, 200.0, 230.0]}
        else:  #office
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id ==
                                            devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule,
                                               fee_schedule_devtype,
                                               left_on='fee_schedule_id',
                                               right_on='fee_schedule_id')
        parcel_fee_schedule_devtype[
            'development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial * parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby(
            'parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data=parcel_fees_processed,
                         index=parcels.index).fillna(0)

        pf = sqftproforma.SqFtProForma(pfc)
        fees = fees * pf.config.cap_rate

        return run_proforma_lookup(parcels,
                                   fees,
                                   pf,
                                   use,
                                   form,
                                   residential_to_yearly,
                                   parcel_filter=parcel_filter)

    d = {}

    ##SF DETACHED proforma (devtype 19)
    form = 'sf_detached'
    devtype_id = 19
    d[form] = residential_proforma(form, devtype_id, parking_rate=1.0)

    ##SF ATTACHED proforma (devtype 20)
    form = 'sf_attached'
    devtype_id = 20
    d[form] = residential_proforma(form, devtype_id, parking_rate=1.0)

    ##MF_RESIDENTIAL proforma (devtype 21)
    form = 'mf_residential'
    devtype_id = 21
    d[form] = residential_proforma(form, devtype_id, parking_rate=1.0)

    ##OFFICE (devtype 4)
    form = 'office'
    devtype_id = 4
    d[form] = nonresidential_proforma(form, devtype_id, form, parking_rate=1.0)

    ##RETAIL (devtype 5)
    form = 'retail'
    devtype_id = 5
    d[form] = nonresidential_proforma(form, devtype_id, form, parking_rate=2.0)

    ##LIGHT INDUSTRIAL (devtype 2)
    form = 'light_industrial'
    devtype_id = 2
    d[form] = nonresidential_proforma(form,
                                      devtype_id,
                                      'industrial',
                                      parking_rate=.6)

    ##HEAVY INDUSTRIAL (devtype 3)
    form = 'heavy_industrial'
    devtype_id = 3
    d[form] = nonresidential_proforma(form,
                                      devtype_id,
                                      'industrial',
                                      parking_rate=.6)

    far_predictions = pd.concat(d.values(), keys=d.keys(), axis=1)
    sim.add_table("feasibility", far_predictions)
Exemple #48
0
def residential_developer(parcels):
    feas = sim.get_table('feasibility').to_frame()

    year = get_year()

    targets = residential_space_targets()

    print "{:,} feasible buildings before running developer".format(len(feas))

    # LUZ overrides, if applicable
    p = sim.get_table('parcels').to_frame(columns=[
        'luz_id', 'total_residential_units', 'total_sfd_du', 'total_sfa_du',
        'total_mfr_du'
    ])
    feas['luz_id'] = p.luz_id
    overrides = pd.read_csv('./data/overrides/luz_overrides.csv')
    overrides = overrides[overrides.year == year]
    controlled_luzes = np.unique(overrides.luz_id)

    if len(overrides) > 0:

        #Record existing LUZ values
        existing_du = p.groupby('luz_id').total_residential_units.sum()
        existing_sfd_du = p.groupby('luz_id').total_sfd_du.sum()
        existing_sfa_du = p.groupby('luz_id').total_sfa_du.sum()
        existing_mfr_du = p.groupby('luz_id').total_mfr_du.sum()
        existing_df = pd.DataFrame({
            'existing_du': existing_du,
            19: existing_sfd_du,
            20: existing_sfa_du,
            21: existing_mfr_du
        }).fillna(0)
        mini_feases = []
        for luz in controlled_luzes:
            overrides_subset = overrides[overrides.luz_id == luz]
            for devtype in np.unique(overrides_subset.development_type_id):
                target = overrides_subset.target[
                    overrides_subset.development_type_id == devtype].values[0]
                print 'LUZ %s has a DU override target for development type %s of %s.' % (
                    luz, devtype, target)
                existing_du = existing_df[devtype][existing_df.index ==
                                                   luz].values[0]
                print '    There are %s existing units of this type in this LUZ' % existing_du
                difference = target - existing_du
                if difference > 0:
                    feas_subset = feas[feas.luz_id == luz]
                    if len(feas_subset) > 0:
                        if devtype == 19: residential_form = 'sf_detached'
                        if devtype == 20: residential_form = 'sf_attached'
                        if devtype == 21: residential_form = 'mf_residential'
                        feasible_units = feas_subset[
                            residential_form].net_units.sum()
                        if feasible_units > 0:
                            if difference > feasible_units:
                                reallocate = difference - feasible_units
                                print '    Moving %s units to the uncontrolled bucket because only part of the target difference was feasible' % reallocate
                                targets[residential_form] = targets[
                                    residential_form] + reallocate
                            dev_luz = developer.Developer(feas_subset)
                            run_developer(dev_luz,
                                          residential_form,
                                          difference,
                                          year,
                                          build=True)
                            #Store the unbuilt feasible parcels and add back into feasibility later
                            mini_feases.append(dev_luz.feasibility)
                        else:
                            print '    No profitable projects'

    #Uncontrolled LUZs
    print 'Running Developer for uncontrolled LUZs'
    feas = feas[~feas.luz_id.isin(controlled_luzes)]
    dev = developer.Developer(feas)
    for residential_form in [
            'mf_residential',
            'sf_attached',
            'sf_detached',
    ]:
        if residential_form in targets.keys():
            target = targets[residential_form]
            run_developer(dev, residential_form, target, year, build=True)

    #Remaining feasible parcels back to feas after running controlled LUZs so that nonres can be built on these parcels if multiple forms allowed and not already built on
    if len(overrides) > 0:
        feas_list = mini_feases.append(dev.feasibility)
        feas = pd.concat(mini_feases)
        sim.add_table("feasibility", feas)
    else:
        sim.add_table("feasibility", dev.feasibility)

    b = sim.get_table('buildings')
    b = b.to_frame(b.local_columns)
    b_sim = b[(b.note == 'simulated') * (b.year_built == year)]
    print 'Simulated DU: %s' % b_sim.residential_units.sum()
    print 'Target DU: %s' % (targets['sf_detached'] +
                             targets['mf_residential'] + targets['sf_attached']
                             )  #Note:  includes negative when target is lower.
Exemple #49
0
def run_developer(dev, residential_form, target, year, build=False):
    old_buildings = sim.get_table('buildings').to_frame(
        sim.get_table('buildings').local_columns)
    parcels = sim.get_table('parcels')
    print 'Residential unit target for %s is %s.' % (residential_form, target)
    if target > 0:
        print residential_form
        drop_after_build = True if build else False
        new_buildings = dev.pick(residential_form,
                                 target,
                                 parcels.parcel_size,
                                 parcels.ave_sqft_per_unit,
                                 parcels.total_residential_units,
                                 max_parcel_size=2000000,
                                 min_unit_size=400,
                                 drop_after_build=True,
                                 residential=True,
                                 bldg_sqft_per_job=400.0)
        if build:
            print 'Constructed %s %s buildings, totaling %s new residential_units' % (
                len(new_buildings), residential_form,
                new_buildings.residential_units.sum())
            overshoot = new_buildings.residential_units.sum() - target
            print 'Overshot target by %s units' % (overshoot)
            print 'Biggest development has %s units' % new_buildings.residential_units.max(
            )
            if overshoot > 1:
                to_remove = new_buildings[['parcel_id',
                                           'residential_units']].copy()
                to_remove = to_remove[
                    to_remove.residential_units < 4].set_index('parcel_id')
                to_remove = to_remove.sort('residential_units')
                to_remove['du_cumsum'] = to_remove.residential_units.cumsum()
                idx_to_remove = np.searchsorted(to_remove.du_cumsum, overshoot)
                parcel_ids_to_remove = to_remove.index.values[:(
                    idx_to_remove[0] + 1)]
                print 'Removing %s units to match target' % to_remove.residential_units.values[:(
                    idx_to_remove[0] + 1)].sum()
                new_buildings = new_buildings[~new_buildings.parcel_id.
                                              isin(parcel_ids_to_remove)]
            new_buildings["year_built"] = year
            new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
            if residential_form == 'sf_detached':
                new_buildings['development_type_id'] = 19
            elif residential_form == 'sf_attached':
                new_buildings['development_type_id'] = 20
            elif residential_form == 'mf_residential':
                new_buildings['development_type_id'] = 21
            new_buildings['improvement_value'] = 0
            new_buildings['note'] = 'simulated'
            new_buildings['res_price_per_sqft'] = 0.0
            new_buildings['nonres_rent_per_sqft'] = 0.0
            new_buildings = new_buildings[old_buildings.columns]

            # Remove redeveloped buildings
            redev_buildings = old_buildings.parcel_id.isin(
                new_buildings.parcel_id)
            l = len(old_buildings)
            drop_buildings = old_buildings[redev_buildings]
            old_buildings = old_buildings[np.logical_not(redev_buildings)]
            l2 = len(old_buildings)
            if l2 - l > 0:
                print "Dropped {} buildings because they were redeveloped".\
                    format(l2-l)

            for tbl in ['households', 'jobs']:
                agents = sim.get_table(tbl)
                agents = agents.to_frame(agents.local_columns)
                displaced_agents = agents.building_id.isin(
                    drop_buildings.index)
                print "Unplaced {} before: {}".format(
                    tbl, len(agents.query("building_id == -1")))
                agents.building_id[displaced_agents] = -1
                print "Unplaced {} after: {}".format(
                    tbl, len(agents.query("building_id == -1")))
                sim.add_table(tbl, agents)

            # Update buildings table
            all_buildings = dev.merge(old_buildings, new_buildings)
            sim.add_table("buildings", all_buildings)

        else:
            return new_buildings.residential_units.sum()
Exemple #50
0
        "jobs_transition",
        "elcm_simulate",
        "households_transition",
        "hlcm_luz_simulate",  #demand/location models
        "price_vars",
        "feasibility",
        "residential_developer",
        "non_residential_developer",  #supply/proforma models
    ],
    years=[
        2013,
        2014,
        2015,
    ])

# Summarize results at MSA level
b = sim.get_table('buildings').to_frame(columns=[
    'msa_id', 'mgra_id', 'residential_units', 'non_residential_sqft', 'note'
])
new_du_by_msa = b[b.note == 'simulated'].groupby(
    'msa_id').residential_units.sum()
new_nrsf_by_msa = b[b.note == 'simulated'].groupby(
    'msa_id').non_residential_sqft.sum()
proportion_du_by_msa = new_du_by_msa / new_du_by_msa.sum()
proportion_nrsf_by_msa = new_nrsf_by_msa / new_nrsf_by_msa.sum()

# Write out indicators to calibration directory
proportion_du_by_msa.to_csv('.\\data\\calibration\\msa_du_simulated.csv',
                            header=True)
proportion_nrsf_by_msa.to_csv('.\\data\\calibration\\msa_nrsf_simulated.csv',
                              header=True)
Exemple #51
0
def non_residential_developer(parcels):
    feas = sim.get_table('feasibility').to_frame()
    dev = developer.Developer(feas)

    print "{:,} feasible buildings before running developer".format(
        len(dev.feasibility))

    year = get_year()

    targets = non_residential_space_targets()

    for non_residential_form in [
            'heavy_industrial', 'light_industrial', 'retail', 'office'
    ]:
        if non_residential_form in targets.keys():
            old_buildings = sim.get_table('buildings').to_frame(
                sim.get_table('buildings').local_columns)

            target = targets[non_residential_form]
            target = target / 400
            print 'Job space target for %s is %s.' % (non_residential_form,
                                                      target)

            if target > 0:
                new_buildings = dev.pick(non_residential_form,
                                         target,
                                         parcels.parcel_size,
                                         parcels.ave_sqft_per_unit,
                                         parcels.total_job_spaces,
                                         max_parcel_size=2000000,
                                         min_unit_size=0,
                                         drop_after_build=True,
                                         residential=False,
                                         bldg_sqft_per_job=400.0)

                print 'Constructed %s %s buildings, totaling %s new job spaces.' % (
                    len(new_buildings), non_residential_form,
                    new_buildings.non_residential_sqft.sum() / 400)

                new_buildings["year_built"] = year
                new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
                if non_residential_form == 'light_industrial':
                    new_buildings['development_type_id'] = 2
                elif non_residential_form == 'heavy_industrial':
                    new_buildings['development_type_id'] = 3
                elif non_residential_form == 'office':
                    new_buildings['development_type_id'] = 4
                elif non_residential_form == 'retail':
                    new_buildings['development_type_id'] = 5
                new_buildings['improvement_value'] = 0
                new_buildings['note'] = 'simulated'
                new_buildings['res_price_per_sqft'] = 0.0
                new_buildings['nonres_rent_per_sqft'] = 0.0
                new_buildings = new_buildings[old_buildings.columns]

                # Remove redeveloped buildings
                redev_buildings = old_buildings.parcel_id.isin(
                    new_buildings.parcel_id)
                l = len(old_buildings)
                drop_buildings = old_buildings[redev_buildings]
                old_buildings = old_buildings[np.logical_not(redev_buildings)]
                l2 = len(old_buildings)
                if l2 - l > 0:
                    print "Dropped {} buildings because they were redeveloped".\
                        format(l2-l)

                for tbl in ['households', 'jobs']:
                    agents = sim.get_table(tbl)
                    agents = agents.to_frame(agents.local_columns)
                    displaced_agents = agents.building_id.isin(
                        drop_buildings.index)
                    print "Unplaced {} before: {}".format(
                        tbl, len(agents.query("building_id == -1")))
                    agents.building_id[displaced_agents] = -1
                    print "Unplaced {} after: {}".format(
                        tbl, len(agents.query("building_id == -1")))
                    sim.add_table(tbl, agents)

                # Update buildings table
                all_buildings = dev.merge(old_buildings, new_buildings)
                sim.add_table("buildings", all_buildings)

    sim.add_table("feasibility", dev.feasibility)
Exemple #52
0
import models
import pandas as pd
import urbansim.sim.simulation as sim

parcels = sim.get_table("parcels")
buildings = sim.get_table("buildings")
households = sim.get_table("households")
jobs = sim.get_table("jobs")

s = buildings.parcel_id.isin(parcels.index)

print "Building's parcel id in parcel index\n", s.value_counts()

s = households.building_id.isin(buildings.index)

print "Households with no building assigned: \n", \
    (households.building_id == -1).value_counts()
print "Household's building id in building index\n", s.value_counts()

s = jobs.building_id.isin(buildings.index)

print "Jobs with no building assigned: \n", \
    (jobs.building_id == -1).value_counts()
print "Job's building id in building index\n", s.value_counts()

print "Len jobs"

print len(jobs)

print "Num job spaces"
# Keys correspond to the resulting parcel columns (minus suffix).
# Values correspond the names in the add-on dataset.
network_attributes = {"tstops": "busstops"}
intersections = {"nodes1": "1-way", "nodes3": "3-way", "nodes4": "4-way"}

pois = {"lbus": "busstops", "ebus": "busstops", 
        "fry": "ferry", "crt": "railway", "lrt": "lightrail"} # will compute nearest distance to these

output_file = "parcels_buffered.h5"

# get input parcel data (modify the path here)
instore = pd.HDFStore('/Users/hana/workspace/data/soundcast/urbansim_outputs/2010/parcels.h5', "r")
#instore = pd.HDFStore(os.path.join(misc.data_dir(), "parcels.h5"), "r")
parcels = instore["parcels"]
# merge in latitude and longitude columns (this parcels table is taken from data/base_year.h5)
parcels_with_lat_long = sim.get_table("parcels").to_frame(['lat', 'long'])
parcels = pd.merge(parcels, parcels_with_lat_long, left_index=True, right_index=True)

# load network & the various addons and assign parcels to the network 
net = load_network(precompute=distances)
load_network_addons(network=net)
assign_nodes_to_dataset(parcels, net)

def process_net_attribute(network, attr, fun):
    print "Processing %s" % attr
    newdf = None
    for dist_index, dist in distances.iteritems():        
        res_name = "%s_%s" % (re.sub("_?p$", "", attr), dist_index) # remove '_p' if present
        aggr = network.aggregate(dist, type=fun, decay="linear", name=attr)
        if newdf is None:
            newdf = pd.DataFrame({res_name: aggr, "node_ids": aggr.index.values})