Exemple #1
0
def build_modulator_from_args(arguments: argparse.Namespace):
    if arguments.raw:
        return None

    if arguments.parameter_zero is None:
        raise ValueError("You need to give a modulation parameter for zero (-p0, --parameter-zero)")

    if arguments.parameter_one is None:
        raise ValueError("You need to give a modulation parameter for one (-p1, --parameter-one)")

    result = Modulator("CLI Modulator")
    result.carrier_freq_hz = float(arguments.carrier_frequency)
    result.carrier_amplitude = float(arguments.carrier_amplitude)
    result.carrier_phase_deg = float(arguments.carrier_phase)
    result.samples_per_bit = int(arguments.bit_length)

    if arguments.modulation_type == "ASK":
        if arguments.parameter_zero.endswith("%"):
            param_zero = float(arguments.parameter_zero[:-1])
        else:
            param_zero = float(arguments.parameter_zero) * 100
        if arguments.parameter_one.endswith("%"):
            param_one = float(arguments.parameter_one[:-1])
        else:
            param_one = float(arguments.parameter_one) * 100
    else:
        param_zero = float(arguments.parameter_zero)
        param_one = float(arguments.parameter_one)

    result.param_for_zero = param_zero
    result.param_for_one = param_one
    result.modulation_type_str = arguments.modulation_type
    result.sample_rate = arguments.sample_rate

    return result
Exemple #2
0
    def test_plot(self):
        modulator = Modulator("gfsk")
        modulator.modulation_type_str = "GFSK"
        modulator.samples_per_bit = 100
        modulator.sample_rate = 1e6
        modulator.param_for_one = 20e3
        modulator.param_for_zero = 10e3
        modulator.carrier_freq_hz = 15e3
        modulator.carrier_phase_deg = 90

        modulator.modulate([True, False, True, False, False], 77)
        data = copy.deepcopy(modulator.modulated_samples)
        modulator.modulate([False, True, True, True, True, False, True],
                           100,
                           start=len(data))
        data = np.concatenate((data, modulator.modulated_samples))

        plt.subplot(2, 1, 1)
        axes = plt.gca()
        axes.set_ylim([-2, 2])
        plt.plot(data.real)
        plt.title("Modulated Wave")

        plt.subplot(2, 1, 2)
        qad = signalFunctions.afp_demod(np.ascontiguousarray(data), 0, 1)
        plt.plot(qad)
        plt.title("Quad Demod")

        plt.show()
Exemple #3
0
    def test_plot(self):
        modulator = Modulator("gfsk")
        modulator.modulation_type_str = "GFSK"
        modulator.samples_per_bit = 100
        modulator.sample_rate = 1e6
        modulator.param_for_one = 20e3
        modulator.param_for_zero = 10e3
        modulator.carrier_freq_hz = 15e3
        modulator.carrier_phase_deg = 90

        modulated_samples = modulator.modulate([True, False, True, False, False], 77)
        data = copy.deepcopy(modulated_samples)
        modulated_samples = modulator.modulate([False, True, True, True, True, False, True], 100, start=len(data))
        data = np.concatenate((data, modulated_samples))

        plt.subplot(2, 1, 1)
        axes = plt.gca()
        axes.set_ylim([-2,2])
        plt.plot(data.real)
        plt.title("Modulated Wave")

        plt.subplot(2, 1, 2)
        qad = signal_functions.afp_demod(np.ascontiguousarray(data), 0, 1)
        plt.plot(qad)
        plt.title("Quad Demod")

        plt.show()
Exemple #4
0
def build_modulator_from_args(arguments: argparse.Namespace):
    if arguments.raw:
        return None
    if arguments.bits_per_symbol is None:
        arguments.bits_per_symbol = 1

    n = 2 ** int(arguments.bits_per_symbol)
    if arguments.parameters is None or len(arguments.parameters) != n:
        raise ValueError("You need to give {} parameters for {} bits per symbol".format(n, int(arguments.bits_per_symbol)))

    result = Modulator("CLI Modulator")
    result.carrier_freq_hz = float(arguments.carrier_frequency)
    result.carrier_amplitude = float(arguments.carrier_amplitude)
    result.carrier_phase_deg = float(arguments.carrier_phase)
    result.samples_per_symbol = int(arguments.samples_per_symbol)
    result.bits_per_symbol = int(arguments.bits_per_symbol)
    result.modulation_type = arguments.modulation_type
    result.sample_rate = arguments.sample_rate

    for i, param in enumerate(arguments.parameters):
        if result.is_amplitude_based and param.endswith("%"):
            result.parameters[i] = float(param[:-1])
        elif result.is_amplitude_based and not param.endswith("%"):
            result.parameters[i] = float(param) * 100
        else:
            result.parameters[i] = float(param)

    return result
Exemple #5
0
def build_modulator_from_args(arguments: argparse.Namespace):
    if arguments.raw:
        return None

    if arguments.parameter_zero is None:
        raise ValueError("You need to give a modulation parameter for zero (-p0, --parameter-zero)")

    if arguments.parameter_one is None:
        raise ValueError("You need to give a modulation parameter for one (-p1, --parameter-one)")

    result = Modulator("CLI Modulator")
    result.carrier_freq_hz = float(arguments.carrier_frequency)
    result.carrier_amplitude = float(arguments.carrier_amplitude)
    result.carrier_phase_deg = float(arguments.carrier_phase)
    result.samples_per_bit = int(arguments.bit_length)

    if arguments.modulation_type == "ASK":
        if arguments.parameter_zero.endswith("%"):
            param_zero = float(arguments.parameter_zero[:-1])
        else:
            param_zero = float(arguments.parameter_zero) * 100
        if arguments.parameter_one.endswith("%"):
            param_one = float(arguments.parameter_one[:-1])
        else:
            param_one = float(arguments.parameter_one) * 100
    else:
        param_zero = float(arguments.parameter_zero)
        param_one = float(arguments.parameter_one)

    result.param_for_zero = param_zero
    result.param_for_one = param_one
    result.modulation_type_str = arguments.modulation_type
    result.sample_rate = arguments.sample_rate

    return result
Exemple #6
0
    def test_channels(self):
        sample_rate = 10**6

        channel1_freq = 40 * 10**3
        channel2_freq = 240 * 10**3

        channel1_data = array.array("B", [1, 0, 1, 0, 1, 0, 0, 1])
        channel2_data = array.array("B", [1, 1, 0, 0, 1, 1, 0, 1])
        channel3_data = array.array("B", [1, 0, 0, 1, 0, 1, 1, 1])

        filter_bw = 0.1

        filter_freq1_high = 1.5 * channel1_freq
        filter_freq1_low = 0.5 * channel1_freq
        filter_freq2_high = 1.5 * channel2_freq
        filter_freq2_low = 0.5 * channel2_freq

        modulator1, modulator2, modulator3 = Modulator("test"), Modulator(
            "test2"), Modulator("test3")
        modulator1.carrier_freq_hz = channel1_freq
        modulator2.carrier_freq_hz = channel2_freq
        modulator3.carrier_freq_hz = -channel2_freq
        modulator1.sample_rate = modulator2.sample_rate = modulator3.sample_rate = sample_rate
        data1 = modulator1.modulate(channel1_data)
        data2 = modulator2.modulate(channel2_data)
        data3 = modulator3.modulate(channel3_data)

        mixed_signal = data1 + data2 + data3

        mixed_signal.tofile("/tmp/three_channels.complex")

        plt.subplot("221")
        plt.title("Signal")
        plt.plot(mixed_signal)

        spectrogram = Spectrogram(mixed_signal)
        plt.subplot("222")
        plt.title("Spectrogram")
        plt.imshow(np.transpose(spectrogram.data), aspect="auto", cmap="magma")
        plt.ylim(0, spectrogram.freq_bins)

        chann1_filtered = Filter.apply_bandpass_filter(
            mixed_signal, filter_freq1_low / sample_rate,
            filter_freq1_high / sample_rate, filter_bw)
        plt.subplot("223")
        plt.title("Channel 1 Filtered ({})".format("".join(
            map(str, channel1_data))))
        plt.plot(chann1_filtered)

        chann2_filtered = Filter.apply_bandpass_filter(
            mixed_signal, filter_freq2_low / sample_rate,
            filter_freq2_high / sample_rate, filter_bw)
        plt.subplot("224")
        plt.title("Channel 2 Filtered ({})".format("".join(
            map(str, channel2_data))))
        plt.plot(chann2_filtered)

        plt.show()
Exemple #7
0
    def test_channels(self):
        sample_rate = 10 ** 6

        channel1_freq = 40 * 10 ** 3
        channel2_freq = 240 * 10 ** 3

        channel1_data = array.array("B", [1, 0, 1, 0, 1, 0, 0, 1])
        channel2_data = array.array("B", [1, 1, 0, 0, 1, 1, 0, 1])
        channel3_data = array.array("B", [1, 0, 0, 1, 0, 1, 1, 1])

        filter_bw = 0.1

        filter_freq1_high = 1.5 * channel1_freq
        filter_freq1_low = 0.5 * channel1_freq
        filter_freq2_high = 1.5*channel2_freq
        filter_freq2_low = 0.5 * channel2_freq

        modulator1, modulator2, modulator3 = Modulator("test"), Modulator("test2"), Modulator("test3")
        modulator1.carrier_freq_hz = channel1_freq
        modulator2.carrier_freq_hz = channel2_freq
        modulator3.carrier_freq_hz = -channel2_freq
        modulator1.sample_rate = modulator2.sample_rate = modulator3.sample_rate = sample_rate
        data1 = modulator1.modulate(channel1_data)
        data2 = modulator2.modulate(channel2_data)
        data3 = modulator3.modulate(channel3_data)

        mixed_signal = data1 + data2 + data3

        mixed_signal.tofile("/tmp/three_channels.complex")

        plt.subplot("221")
        plt.title("Signal")
        plt.plot(mixed_signal)

        spectrogram = Spectrogram(mixed_signal)
        plt.subplot("222")
        plt.title("Spectrogram")
        plt.imshow(np.transpose(spectrogram.data), aspect="auto", cmap="magma")
        plt.ylim(0, spectrogram.freq_bins)

        chann1_filtered = Filter.apply_bandpass_filter(mixed_signal, filter_freq1_low / sample_rate, filter_freq1_high / sample_rate, filter_bw)
        plt.subplot("223")
        plt.title("Channel 1 Filtered ({})".format("".join(map(str, channel1_data))))
        plt.plot(chann1_filtered)

        chann2_filtered = Filter.apply_bandpass_filter(mixed_signal, filter_freq2_low / sample_rate, filter_freq2_high / sample_rate, filter_bw)
        plt.subplot("224")
        plt.title("Channel 2 Filtered ({})".format("".join(map(str, channel2_data))))
        plt.plot(chann2_filtered)

        plt.show()
Exemple #8
0
    def read_modulators_from_file(self, filename: str):
        if not filename:
            return []

        tree = ET.parse(filename)
        root = tree.getroot()

        result = []
        for mod_tag in root.iter("modulator"):
            mod = Modulator(mod_tag.attrib["name"])
            mod.carrier_freq_hz = float(mod_tag.attrib["carrier_freq_hz"])
            mod.carrier_amplitude = float(mod_tag.attrib["carrier_amplitude"])
            mod.carrier_phase_deg = float(mod_tag.attrib["carrier_phase_deg"])
            mod.modulation_type = int(mod_tag.attrib["modulation_type"])
            mod.sample_rate = float(mod_tag.attrib["sample_rate"])
            mod.param_for_one = float(mod_tag.attrib["param_for_one"])
            mod.param_for_zero = float(mod_tag.attrib["param_for_zero"])
            result.append(mod)

        return result
    def test_performance(self):
        self.form = MainController()
        self.cfc = self.form.compare_frame_controller
        self.stc = self.form.simulator_tab_controller
        self.gtc = self.form.generator_tab_controller

        self.form.add_signalfile(get_path_for_data_file("esaver.complex16s"))
        self.sframe = self.form.signal_tab_controller.signal_frames[0]
        self.sim_frame = self.form.simulator_tab_controller
        self.form.ui.tabWidget.setCurrentIndex(3)
        self.cfc.proto_analyzer.auto_assign_labels()

        self.network_sdr_plugin_sender = NetworkSDRInterfacePlugin(raw_mode=True)

        part_a = Participant("Device A", shortname="A", color_index=0)
        part_b = Participant("Device B", shortname="B", color_index=1)
        part_b.simulate = True

        self.form.project_manager.participants.append(part_a)
        self.form.project_manager.participants.append(part_b)
        self.form.project_manager.project_updated.emit()

        sniffer = ProtocolSniffer(100, 0.01, 0.01, 0.1, 5, "FSK", 1,
                                  NetworkSDRInterfacePlugin.NETWORK_SDR_NAME, BackendHandler(),
                                  network_raw_mode=True)
        sender = EndlessSender(BackendHandler(), NetworkSDRInterfacePlugin.NETWORK_SDR_NAME)

        simulator = Simulator(self.stc.simulator_config, self.gtc.modulators, self.stc.sim_expression_parser,
                              self.form.project_manager, sniffer=sniffer, sender=sender)

        pause = 100
        msg_a = SimulatorMessage(part_b,
                                 [1, 0] * 16 + [1, 1, 0, 0] * 8 + [0, 0, 1, 1] * 8 + [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 pause=pause, message_type=MessageType("empty_message_type"), source=part_a)

        msg_b = SimulatorMessage(part_a,
                                 [1, 0] * 16 + [1, 1, 0, 0] * 8 + [1, 1, 0, 0] * 8 + [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 pause=pause, message_type=MessageType("empty_message_type"), source=part_b)

        self.stc.simulator_config.add_items([msg_a, msg_b], 0, None)
        self.stc.simulator_config.update_active_participants()

        port = self.get_free_port()
        sniffer = simulator.sniffer
        sniffer.rcv_device.set_server_port(port)

        self.network_sdr_plugin_sender.client_port = port

        sender = simulator.sender
        port = self.get_free_port()
        sender.device.set_client_port(port)
        sender.device._VirtualDevice__dev.name = "simulator_sender"

        current_index = Value("L")
        elapsed = Value("f")
        target_num_samples = 13600 + pause
        receive_process = Process(target=receive, args=(port, current_index, target_num_samples, elapsed))
        receive_process.daemon = True
        receive_process.start()

        # Ensure receiver is running
        time.sleep(2)

        # spy = QSignalSpy(self.network_sdr_plugin_receiver.rcv_index_changed)
        simulator.start()

        modulator = Modulator("test_modulator")
        modulator.samples_per_symbol = 100
        modulator.carrier_freq_hz = 55e3

        # yappi.start()

        self.network_sdr_plugin_sender.send_raw_data(modulator.modulate(msg_a.encoded_bits), 1)
        time.sleep(0.5)
        # send some zeros to simulate the end of a message
        self.network_sdr_plugin_sender.send_raw_data(np.zeros(self.num_zeros_for_pause, dtype=np.complex64), 1)
        time.sleep(0.5)
        receive_process.join(15)

        logger.info("PROCESS TIME: {0:.2f}ms".format(elapsed.value))

        # self.assertEqual(current_index.value, target_num_samples)
        self.assertLess(elapsed.value, 200)

        # timeout = spy.wait(2000)
        # yappi.get_func_stats().print_all()
        # yappi.get_thread_stats().print_all()
Exemple #10
0
        self.ringbuffer.push(data)


if __name__ == '__main__':
    from urh.dev.BackendHandler import BackendHandler
    from urh.signalprocessing.Message import Message
    from urh.signalprocessing.MessageType import MessageType
    from urh.signalprocessing.Modulator import Modulator
    from urh.util.Logger import logger
    import time

    endless_sender = EndlessSender(BackendHandler(), "HackRF")
    msg = Message([1, 0] * 16 + [1, 1, 0, 0] * 8 + [0, 0, 1, 1] * 8 +
                  [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4, 0,
                  MessageType("empty_message_type"))
    modulator = Modulator("test_modulator")
    modulator.samples_per_bit = 1000
    modulator.carrier_freq_hz = 55e3

    logger.debug("Starting endless sender")
    endless_sender.start()
    time.sleep(1)
    logger.debug("Pushing data")
    endless_sender.push_data(modulator.modulate(msg.encoded_bits))
    logger.debug("Pushed data")
    time.sleep(5)
    logger.debug("Stopping endless sender")
    endless_sender.stop()
    time.sleep(1)
    logger.debug("bye")
Exemple #11
0
    def test_performance(self):
        self.form = MainController()
        self.cfc = self.form.compare_frame_controller
        self.stc = self.form.simulator_tab_controller
        self.gtc = self.form.generator_tab_controller

        self.form.add_signalfile(get_path_for_data_file("esaver.coco"))
        self.sframe = self.form.signal_tab_controller.signal_frames[0]
        self.sim_frame = self.form.simulator_tab_controller
        self.form.ui.tabWidget.setCurrentIndex(3)
        self.cfc.proto_analyzer.auto_assign_labels()

        self.network_sdr_plugin_sender = NetworkSDRInterfacePlugin(raw_mode=True)

        part_a = Participant("Device A", shortname="A", color_index=0)
        part_b = Participant("Device B", shortname="B", color_index=1)
        part_b.simulate = True

        self.form.project_manager.participants.append(part_a)
        self.form.project_manager.participants.append(part_b)
        self.form.project_manager.project_updated.emit()

        sniffer = ProtocolSniffer(100, 0.01, 0.1, 5, 1, NetworkSDRInterfacePlugin.NETWORK_SDR_NAME, BackendHandler(),
                                  network_raw_mode=True)
        sender = EndlessSender(BackendHandler(), NetworkSDRInterfacePlugin.NETWORK_SDR_NAME)

        simulator = Simulator(self.stc.simulator_config, self.gtc.modulators, self.stc.sim_expression_parser,
                              self.form.project_manager, sniffer=sniffer, sender=sender)

        pause = 100
        msg_a = SimulatorMessage(part_b,
                                 [1, 0] * 16 + [1, 1, 0, 0] * 8 + [0, 0, 1, 1] * 8 + [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 pause=pause, message_type=MessageType("empty_message_type"), source=part_a)

        msg_b = SimulatorMessage(part_a,
                                 [1, 0] * 16 + [1, 1, 0, 0] * 8 + [1, 1, 0, 0] * 8 + [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 pause=pause, message_type=MessageType("empty_message_type"), source=part_b)

        self.stc.simulator_config.add_items([msg_a, msg_b], 0, None)
        self.stc.simulator_config.update_active_participants()

        port = self.get_free_port()
        sniffer = simulator.sniffer
        sniffer.rcv_device.set_server_port(port)

        self.network_sdr_plugin_sender.client_port = port

        sender = simulator.sender
        port = self.get_free_port()
        sender.device.set_client_port(port)
        sender.device._VirtualDevice__dev.name = "simulator_sender"

        current_index = Value("L")
        elapsed = Value("f")
        target_num_samples = 13600 + pause
        receive_process = Process(target=receive, args=(port, current_index, target_num_samples, elapsed))
        receive_process.daemon = True
        receive_process.start()

        # Ensure receiver is running
        time.sleep(2)

        # spy = QSignalSpy(self.network_sdr_plugin_receiver.rcv_index_changed)
        simulator.start()

        modulator = Modulator("test_modulator")
        modulator.samples_per_bit = 100
        modulator.carrier_freq_hz = 55e3

        # yappi.start()

        self.network_sdr_plugin_sender.send_raw_data(modulator.modulate(msg_a.encoded_bits), 1)
        time.sleep(0.5)
        # send some zeros to simulate the end of a message
        self.network_sdr_plugin_sender.send_raw_data(np.zeros(self.num_zeros_for_pause, dtype=np.complex64), 1)
        time.sleep(0.5)
        receive_process.join(15)

        logger.info("PROCESS TIME: {0:.2f}ms".format(elapsed.value))

        # self.assertEqual(current_index.value, target_num_samples)
        self.assertLess(elapsed.value, 200)

        # timeout = spy.wait(2000)
        # yappi.get_func_stats().print_all()
        # yappi.get_thread_stats().print_all()
Exemple #12
0
    def push_data(self, data: np.ndarray):
        self.ringbuffer.push(data)


if __name__ == '__main__':
    from urh.dev.BackendHandler import BackendHandler
    from urh.signalprocessing.Message import Message
    from urh.signalprocessing.MessageType import MessageType
    from urh.signalprocessing.Modulator import Modulator
    from urh.util.Logger import logger
    import time

    endless_sender = EndlessSender(BackendHandler(), "HackRF")
    msg = Message([1, 0] * 16 + [1, 1, 0, 0] * 8 + [0, 0, 1, 1] * 8 + [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4, 0,
                  MessageType("empty_message_type"))
    modulator = Modulator("test_modulator")
    modulator.samples_per_bit = 1000
    modulator.carrier_freq_hz = 55e3

    logger.debug("Starting endless sender")
    endless_sender.start()
    time.sleep(1)
    logger.debug("Pushing data")
    endless_sender.push_data(modulator.modulate(msg.encoded_bits))
    logger.debug("Pushed data")
    time.sleep(5)
    logger.debug("Stopping endless sender")
    endless_sender.stop()
    time.sleep(1)
    logger.debug("bye")
Exemple #13
0
    def test_performance(self):
        part_a = Participant("Device A", shortname="A", color_index=0)
        part_b = Participant("Device B", shortname="B", color_index=1)
        part_b.simulate = True

        self.form.project_manager.participants.append(part_a)
        self.form.project_manager.participants.append(part_b)
        self.form.project_manager.project_updated.emit()

        sniffer = ProtocolSniffer(100,
                                  0.01,
                                  0.001,
                                  5,
                                  1,
                                  NetworkSDRInterfacePlugin.NETWORK_SDR_NAME,
                                  BackendHandler(),
                                  network_raw_mode=True,
                                  real_time=True)
        sender = EndlessSender(BackendHandler(),
                               NetworkSDRInterfacePlugin.NETWORK_SDR_NAME)

        simulator = Simulator(self.stc.simulator_config,
                              self.gtc.modulators,
                              self.stc.sim_expression_parser,
                              self.form.project_manager,
                              sniffer=sniffer,
                              sender=sender)

        msg_a = SimulatorMessage(part_b, [1, 0] * 16 + [1, 1, 0, 0] * 8 +
                                 [0, 0, 1, 1] * 8 +
                                 [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 100000,
                                 MessageType("empty_message_type"),
                                 source=part_a)

        msg_b = SimulatorMessage(part_a, [1, 0] * 16 + [1, 1, 0, 0] * 8 +
                                 [1, 1, 0, 0] * 8 +
                                 [1, 0, 1, 1, 1, 0, 0, 1, 1, 1] * 4,
                                 100000,
                                 MessageType("empty_message_type"),
                                 source=part_b)

        self.stc.simulator_config.add_items([msg_a, msg_b], 0, None)
        self.stc.simulator_config.update_active_participants()

        port = self.__get_free_port()
        sniffer = simulator.sniffer
        sniffer.rcv_device.set_server_port(port)

        self.network_sdr_plugin_sender.client_port = port

        sender = simulator.sender
        port = self.__get_free_port()
        sender.device.set_client_port(port)
        sender.device._VirtualDevice__dev.name = "simulator_sender"

        current_index = Value("L")
        elapsed = Value("f")
        target_num_samples = 113600
        receive_process = Process(target=receive,
                                  args=(port, current_index,
                                        target_num_samples, elapsed))
        receive_process.daemon = True
        receive_process.start()

        # Ensure receiver is running
        time.sleep(1)

        # spy = QSignalSpy(self.network_sdr_plugin_receiver.rcv_index_changed)
        simulator.start()

        modulator = Modulator("test_modulator")
        modulator.samples_per_bit = 100
        modulator.carrier_freq_hz = 55e3
        modulator.modulate(msg_a.encoded_bits)

        # yappi.start()

        self.network_sdr_plugin_sender.send_raw_data(
            modulator.modulated_samples, 1)
        QTest.qWait(100)
        receive_process.join(10)

        print("PROCESS TIME: {0:.2f}ms".format(elapsed.value))

        self.assertEqual(current_index.value, target_num_samples)
        self.assertLess(elapsed.value, 200)