def translate_api(): start_time = datetime.datetime.now() text = request.json['text'] languages = request.json['languages'] savetext = 'savetext' in request.json and request.json['savetext'] == True if languages == 'eng-cat': openNMT = openNMT_engcat else: openNMT = openNMT_cateng # print("Input:" + text) tokenizer = TextTokenizer() sentences, translate = tokenizer.tokenize(text) results = _launch_translate_threads(openNMT, text, sentences, translate) translated = tokenizer.sentence_from_tokens(sentences, translate, results) if savetext: saved_filename = os.path.join(SAVED_TEXTS, "source.txt") with open(saved_filename, "a") as text_file: t = text.replace('\n', '') text_file.write(f'{languages}\t{t}\n') time_used = datetime.datetime.now() - start_time words = len(text.split(' ')) usage = Usage() usage.log(languages, words, time_used) result = {} result['text'] = text result['translated'] = translated result['time'] = str(time_used) return json_answer(result)
def upload_file(): file = request.files['file'] email = request.values['email'] model_name = request.values['model_name'] if file.filename == '': result = {} result['error'] = "No s'ha especificat el fitxer" return json_answer(result, 404) if email == '': result = {} result['error'] = "No s'ha especificat el correu" return json_answer(result, 404) if file and _allowed_file(file.filename): filename = uuid.uuid4().hex fullname = os.path.join(UPLOAD_FOLDER, filename) file.save(fullname) save_file_to_process(fullname, email, model_name) logging.debug("Saved file {0}".format(fullname)) result = [] usage = Usage() usage.log(model_name, 0, datetime.timedelta(), 'file') return json_answer(result) result = {} result['error'] = "Error desconegut" return json_answer(result, 500)
def prepare(self, argv): self.help_message = self.help_message % self.command_name BaseCommand.prepare(self, argv) notebook_id = self.vars.get('notebook', None) if notebook_id is None: raise Usage(self.help_message) self.notebook_id = self.build_available_notebook_id(notebook_id)
def recognize_api(): if 'file' not in request.files: return 'No file part' file = request.files['file'] if file.filename == '': return 'No filename' time = datetime.datetime.now() try: with tempfile.NamedTemporaryFile() as temp_file: recognizer = Recognizer() filename = temp_file.name file.save(filename) text = recognizer.get_text(filename) used = datetime.datetime.now() - time usage = Usage() usage.log() return "Text reconegut: [{0}] - temps usat {1}".format(text, used) except ValueError as e: return ( "No és un fitxer d'àudio en format PCM WAV, AIFF/AIFF-C o FLAC ", 400)
def stats(): requested = request.args.get('date') date_requested = datetime.datetime.strptime(requested, '%Y-%m-%d') usage = Usage() result = usage.get_stats(date_requested) return json_answer(result)
class BaseCommand(object): def __init__(self): self.api_url = None self.http_header = {'Connection': 'close'} self.cookies = {} self.help_message = "" self.longopts = [] self.vars = {} self.command_name = "unknown" def set_command_name(self, command_name): self.command_name = command_name def prepare(self, argv): try: longopts = ["help"] + ["%s=" % v for v in self.longopts] opts, args = getopt.getopt(argv, "h", longopts=longopts) except getopt.error, msg: raise Usage(self.help_message) longopts = ["--%s" % v for v in self.longopts] # option processing for option, value in opts: if option in ("-h", "--help"): raise Usage(self.help_message) if option in longopts: #Convert --option_name to option_name self.vars[option[2:]] = value
def prepare(self, argv): self.help_message = self.help_message % self.command_name BaseCommand.prepare(self, argv) interpreter_id = self.vars.get('interpreter', None) if interpreter_id is None: raise Usage(self.help_message) self.interpreter_id = self.build_available_interpreter_id( interpreter_id)
def stats(): requested = request.args.get('date') date_requested = datetime.datetime.strptime(requested, '%Y-%m-%d') usage = Usage() result = usage.get_stats(date_requested) cnt = _get_processed_files(date_requested) result["files"] = cnt return json_answer(result)
def stats(): requested = request.args.get('date') date_requested = datetime.datetime.strptime(requested, '%Y-%m-%d') usage = Usage() calls = usage.get_stats(date_requested) result = {} result['calls'] = calls return json_answer(json.dumps(result, indent=4, separators=(',', ': ')))
def main(): bot.add_cog(Input(bot)) bot.add_cog(Output(bot)) bot.add_cog(Administration(bot)) bot.add_cog(Usage(bot)) bot.run(TOKEN) db_cursor.close() db_connection.close()
def main(argv=None): if argv is None: argv = sys.argv # option processing config_path = os.environ['HOME'] + "/.zdari.yml" try: opts, args = getopt.getopt(argv[1:], "h", ["help", "config="]) raise_usage = len(argv) < 2 next_argv_index = 1 if len(argv) >= 2 else 0 for option, value in opts: if option in ("-h", "--help"): raise_usage = True if option in ("--config"): config_path = value remove_index = [ i for (i, v) in enumerate(argv) if v == '--config' ] next_argv_index = 3 if len(argv) > 3 else 0 config = init(config_path) command_type = argv[next_argv_index] if raise_usage or command_type not in zeppelincmd.invoker.list_command_types( ): raise Usage(help_message) argv = argv[next_argv_index + 1:] command_name = argv[0] if len(argv) > 0 else "" if command_name not in zeppelincmd.invoker.list_commands(command_type): raise Usage("""Command type: %s\nSupport Commands\n%s """ % (command_type, '\n'.join([ " " + v for v in zeppelincmd.invoker.list_commands(command_type) ]))) argv = argv[1:] zeppelincmd.invoker.execute(command_type, command_name, config, argv) except Usage, err: print >> sys.stderr, str(err.msg) return 2
def search_request(): source = request.args.get('source') target = request.args.get('target') project = ','.join(request.args.getlist('project')) search = Search(source, target, project) View = WebView() result = View.do(search) usage = Usage() usage.log() return result
def search_api(): source = request.args.get('source') target = request.args.get('target') page = request.args.get('page') project = ','.join(request.args.getlist('project')) search = Search(source, target, project) results = SearchAPIResults() json = results.do(search, page) usage = Usage() usage.log() return json
def start(): argument = sys.argv[1:] list_item = ToDoModel() usage = Usage() if not argument: usage.usage_info() elif argument[0] == "-l": list_item.list_todo() elif argument[0] == "-a": list_item.add(sys.argv[2]) elif argument[0] == "-r": list_item.remove(sys.argv[2]) elif argument[0] == "-c": list_item.list_todo
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem2') solution_dir = os.path.join("Problems", "Problem2Solution") data_reader = DataReader(problem_dataset_dir) training_data, testing_data = data_reader.get_data() codons_table = data_reader.get_rna_codon_table() for sample in training_data: dna_string = sample[0][0] amino_acid = sample[0][1] output = sample[1] dna = DNA(dna_string) dna.set_codon_table(codons_table) candidates = dna.get_dna_to_amino_acid_candidates(amino_acid) if set(candidates) != set(output): raise Exception("Output not matched!\nExpecting: " + str(output) + "\nFound: " + str(candidates)) print("Passed training data..\n\n") writer = DataWriter(solution_dir) usage = Usage() for sample in testing_data: usage.start() dna_string = sample[0][0] amino_acid = sample[0][1] dna = DNA(dna_string) dna.set_codon_table(codons_table) candidates = dna.get_dna_to_amino_acid_candidates(amino_acid) usage.end() writer.write_data((dna_string, amino_acid), candidates, usage.get_execution_time(), usage.get_memory_usage()) print("DNA:\n" + dna_string) print("Protein\n" + amino_acid) print("\n\nOutput") print("=====") print(str(len(candidates))) for substring in candidates: print(substring) print("\n\nExecution Time: " + str(usage.get_execution_time()) + " s") print("Memory Usage: " + str(usage.get_memory_usage()) + " MB")
def get_data(self): gpu = GPU() usage = Usage(3) data = [] data_list = [ usage.cpu_csv(), usage.disk_csv(), usage.mem_ram_csv(), usage.mem_swap_csv(), gpu.csv() ] for i in data_list: data += i.split(',') return data
def get_json(self, date_requested): dao = ProjectMetaDataDao() dao.open('statistics.db3') total_words = 0 projects = dao.get_all() for project in projects: total_words += project.words usage = Usage() calls = usage.get_stats(date_requested) results = {} results['total_words'] = total_words results['projects'] = len(projects) results['searches'] = calls return json.dumps(results, indent=4, separators=(',', ': '))
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem11') solution_dir = os.path.join("Problems", "Problem11Solution") data_reader = DataReader(problem_dataset_dir) test_cases, output = data_reader.get_data() scoring_matrix = data_reader.get_BLOSUM62_data() for train_i in range(0, len(output)): alpha_dna, beta_dna = test_cases[train_i] case_output = output[train_i] strings_algorithms = StringsAlgorithms(alpha_dna, beta_dna) align = strings_algorithms.alignment(_type='global', scoring_matrix=scoring_matrix) if align != case_output: raise Exception("Output not matched!\nExpecting: " + str(case_output) + "\nFound: " + str(align)) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output), len(test_cases)): usage.start() alpha_dna, beta_dna = test_cases[test_i] strings_algorithms = StringsAlgorithms(alpha_dna, beta_dna) align = strings_algorithms.alignment(_type='global', scoring_matrix=scoring_matrix) usage.end() writer.write_data(test_i + 1, align, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + alpha_dna + "\n" + beta_dna + "\n") print("\n\nOutput") print("=====") print(align[0]) print(align[1][0]) print(align[1][1]) print("\n") print("======") print("Execution Time: " + str(usage.get_execution_time()) + " s") print("Memory Used: " + str(usage.get_memory_usage()) + " MB")
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem10') solution_dir = os.path.join("Problems", "Problem10Solution") data_reader = DataReader(problem_dataset_dir) test_cases, output = data_reader.get_data() for train_i in range(0, len(output)): alpha_dna, beta_dna = test_cases[train_i] case_output = output[train_i] strings_algorithms = StringsAlgorithms(alpha_dna, beta_dna) lcs = strings_algorithms.lcs('dp') print(len(lcs)) if len(case_output) != len(lcs): raise Exception("Output not matched!\nExpecting: " + str(case_output) + "\nFound: " + str(lcs)) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output), len(test_cases)): usage.start() alpha_dna, beta_dna = test_cases[test_i] strings_algorithms = StringsAlgorithms(alpha_dna, beta_dna) lcs = strings_algorithms.lcs('dp') print(len(lcs)) usage.end() writer.write_data(test_i + 1, lcs, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + alpha_dna + "\n" + beta_dna + "\n") print("\n\nOutput") print("=====") print(lcs) print("\n") print("======") print("Execution Time: " + str(usage.get_execution_time()) + " s") print("Memory Used: " + str(usage.get_memory_usage()) + " MB")
def __init__(self, path, repository, user): self.path = path self.gpu = GPU() self.usage = Usage(15) self.headers = [ self.usage.cpu_header, self.usage.disk_header, self.usage.mem_ram_header, self.usage.mem_swap_header, self.gpu.header ] self.values = [ self.usage.cpu_csv, self.usage.disk_csv, self.usage.mem_ram_csv, self.usage.mem_swap_csv, self.gpu.csv ] self.logger = Logger(os.path.join(self.path, repository), delay=0) self.logger.set_header(self.headers) self.logger.set_csv(self.values) self.saver = Saver() self.saver.get_repository(path, repository, user)
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem17') solution_dir = os.path.join("Problems", "Problem17Solution") data_reader = DataReader(problem_dataset_dir) test_cases, output = data_reader.get_data() for train_i in range(0, len(output)): dna = test_cases[train_i][0] k = test_cases[train_i][1][0] score_matrix = test_cases[train_i][1][1] case_output = output[train_i] most_probable_k_mer = DNA(dna).get_most_probable_k_mer(int(k), score_matrix) if most_probable_k_mer != case_output: raise Exception("Output not matched!\nExpecting: " + str(case_output) + "\nFound: " + str(most_probable_k_mer)) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output) - 1, len(test_cases)): usage.start() dna = test_cases[test_i][0] k = test_cases[test_i][1][0] score_matrix = test_cases[test_i][1][1] most_probable_k_mer = DNA(dna).get_most_probable_k_mer(int(k), score_matrix) usage.end() writer.write_data(test_i + 1, most_probable_k_mer, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + str(dna) + "\n" + str(k) + "\n" + str(score_matrix)) print("\n\nOutput") print("=====") print(most_probable_k_mer) print("\n") print("======") print("Execution Time: " + str(usage.get_execution_time()) + " s") print("Memory Used: " + str(usage.get_memory_usage()) + " MB")
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem13') solution_dir = os.path.join("Problems", "Problem13Solution") data_reader = DataReader(problem_dataset_dir) test_cases, output = data_reader.get_data() for train_i in range(0, len(output)): (k, genome) = test_cases[train_i] case_output = output[train_i] dna = DNA(genome) k_mers = dna.get_k_mers(int(k)) if sorted(case_output) != sorted(k_mers): raise Exception("Output not matched!\nExpecting: " + str(case_output) + "\nFound: " + str(k_mers)) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output), len(test_cases)): usage.start() (k, genome) = test_cases[test_i] dna = DNA(genome) k_mers = dna.get_k_mers(int(k)) usage.end() writer.write_data(test_i + 1, k_mers, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + k + "\n" + genome + "\n") print("\n\nOutput") print("=====") print(k_mers) print("\n") print("======") print("Execution Time: " + str(usage.get_execution_time()) + " s") print("Memory Used: " + str(usage.get_memory_usage()) + " MB")
def main(argv=None): if argv is None: argv = sys.argv try: try: opts, args = getopt.getopt(argv[1:], 'h', ['help']) except getopt.GetoptError as e: raise Usage(e) input_fc = "in_memory/temp" output_file = os.path.join(config.config_dir, "test_spagedi_export.txt") for opt, arg in opts: if opt in ('-h', '--help'): print __doc__ return 0 # Prompt the user: what test are we doing? defaults = Bunch({ 'spagedi_file_path': os.path.join(config.config_dir, "spagedi_data.txt"), }) sequence = spagedi_user_inputs(spagedi_tree(), [], defaults) sauce = prepare({ 'standalone': True, 'sequence': sequence, 'input_fc': input_fc, 'spagedi_file_path': defaults.spagedi_file_path, 'output_file': output_file, 'analysis_type': '', 'order_by': 'Individual_ID', 'show_spagedi_output': True, }) # Fire up Spagedi and crunch some numbers spagedi = SpagediWrapper(**sauce) parameters = spagedi.getParameterInfo() return spagedi.execute(parameters, None) except Usage as e: print >> sys.stderr, e.msg print >> sys.stderr, "for help use --help" return 2
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem16') solution_dir = os.path.join("Problems", "Problem16Solution") data_reader = DataReader(problem_dataset_dir) test_cases, output = data_reader.get_data() for train_i in range(0, len(output)): k_mers = test_cases[train_i] graph = Graph() adj_list = graph.get_debruijn_graph(_type='k_mers', k_mers=k_mers) case_output = output[train_i] if sorted(adj_list.items()) != sorted(case_output.items()): raise Exception("Output not matched!\nExpecting: " + str(sorted(case_output.items())) + "\nFound: " + str(sorted(adj_list.items()))) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output), len(test_cases)): usage.start() k_mers = test_cases[test_i] adj_list = Graph().get_debruijn_graph(_type='k_mers', k_mers=k_mers) usage.end() writer.write_data(test_i + 1, adj_list, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + str(k_mers) + "\n") print("\n\nOutput") print("=====") print(adj_list) print("\n") print("======") print("Execution Time: " + str(usage.get_execution_time()) + " s") print("Memory Used: " + str(usage.get_memory_usage()) + " MB")
def main(): problem_dataset_dir = os.path.join('Problems', 'Problem1') solution_dir = os.path.join("Problems", "Problem1Solution") data_reader = DataReader(problem_dataset_dir) training_data, testing_data = data_reader.get_data() codons_table = data_reader.get_rna_codon_table() for sample in training_data: rna_string = sample[0] output = sample[1] rna = RNA(rna_string) rna.set_codons_table(codons_table) amino_acid = rna.to_amino_acid() if amino_acid != output: raise Exception("Output not matched!\nExpecting: " + output + "\nFound: " + amino_acid) print("Passed training data..\n\n") writer = DataWriter(solution_dir) usage = Usage() for sample in testing_data: usage.start() rna_string = sample[0] rna = RNA(rna_string) rna.set_codons_table(codons_table) amino_acid = rna.to_amino_acid() usage.end() writer.write_data(rna_string, amino_acid, usage.get_execution_time(), usage.get_memory_usage()) print("RNA:\n" + rna_string) print("Protein:\n" + amino_acid) print("\n\nExecution Time: " + str(usage.get_execution_time()) + " s") print("Memory Usage: " + str(usage.get_memory_usage()) + " MB")
def voice_api(): text = request.args.get('text') token = request.args.get('token') voice = request.args.get('voice') or "ona" if voice not in ["ona", "pau"]: return ("Bad Request", 400) if token is None or getMD5(text) != token.lower(): return ("Forbidden", 403) txt2wave = '/usr/bin/text2wave' lame = '/usr/bin/lame' with tempfile.NamedTemporaryFile() as encoded_file,\ tempfile.NamedTemporaryFile() as wave_file,\ tempfile.NamedTemporaryFile() as mp3_file: text = _normalize(text) f = open(encoded_file.name, 'wb') f.write(text.encode('ISO-8859-15', 'ignore')) f.close() cmd = '{0} -o {1} {2} -eval "({3})"'.\ format(txt2wave, wave_file.name, encoded_file.name, festival_voices[voice]) p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) p.wait() cmd = '{0} -f {1} {2}'.\ format(lame, wave_file.name, mp3_file.name) p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) p.wait() usage = Usage() usage.log() return send_file(mp3_file.name, mimetype="audio/mp3", as_attachment=False, attachment_filename=mp3_file.name)
def apertium_translate_process(values): global translate_calls, translate_chars translate_calls += 1 start_time = datetime.datetime.now() text = None text = values['q'] translate_chars += len(text) langpair = values['langpair'] savetext = 'savetext' in values and values['savetext'] == True languages = _convert_apertium_languages_aliases_to_iso639_3(langpair) if savetext: saved_filename = os.path.join(SAVED_TEXTS, "source.txt") with open(saved_filename, "a") as text_file: t = text.replace('\n', '') text_file.write(f'{languages}\t{t}\n') openNMT = openNMTs[languages] translated = openNMT.translate_parallel(text) result = {} result = _get_bias_message_if_needed(languages, text, result) time_used = datetime.datetime.now() - start_time words = len(text.split(' ')) usage = Usage() usage.log(languages, words, time_used, 'form') responseData = {} responseData['translatedText'] = translated result['responseStatus'] = 200 result['responseData'] = responseData result['time'] = str(time_used) return json_answer(result)
for train_i in range(0, len(output)): case = test_cases[train_i] case_output = output[train_i] dna = DNA(case) reverse_complement = dna.reverse_complement() if reverse_complement != case_output: raise Exception("Output not matched!\nExpecting: " + str(case_output) + "\nFound: " + reverse_complement) print("Passed training data..") writer = DataWriter(solution_dir) usage = Usage() for test_i in range(len(test_cases) - len(output), len(test_cases)): usage.start() case = test_cases[test_i] dna = DNA(case) reverse_complement = dna.reverse_complement() usage.end() writer.write_data(test_i + 1, reverse_complement, usage.get_execution_time(), usage.get_memory_usage()) print("\n\nInput:\n" + case) print("\n\nOutput") print("=====")
def test_using_inbuilt_roundmethod(self): self.assertEqual(round(Usage(31, 9) / 3, 3), Usage(first=10.333, second=3.0))
def test_onlyfirst_list(self): self.assertEqual(Usage.sum([a, b, b]), Usage(first=131, second=294))