def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Combo.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, lag_q=lag_q) self.predy_e, self.e_pred, warn = sp_att(w,self.y,\ self.predy,yend2[:,-1].reshape(self.n,1),self.betas[-2]) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo(reg=self, w=w, vm=vm)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Lag.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, robust=robust, gwk=gwk,\ lag_q=lag_q, sig2n_k=sig2n_k) self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self, warn) self.title = "SPATIAL TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) x_constant = USER.check_constant(x) BaseTSLS.__init__(self, y=y, x=x_constant, yend=yend, q=q, robust=robust, gwk=gwk, sig2n_k=sig2n_k) self.title = "TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.TSLS(reg=self, vm=vm, w=w, spat_diag=spat_diag)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Lag.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, robust=robust, gwk=gwk,\ lag_q=lag_q, sig2n_k=sig2n_k) self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self,warn) self.title = "SPATIAL TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_q.extend(USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) BaseGM_Endog_Error.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend, q=q) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Endog_Error(reg=self, w=w, vm=vm)
def __init__(self, y, x, w, method='full', epsilon=0.0000001, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) method = method.upper() if method in ['FULL', 'ORD']: BaseML_Lag.__init__(self, y=y, x=x_constant, w=w, method=method, epsilon=epsilon) # increase by 1 to have correct aic and sc, include rho in count self.k += 1 self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG" + \ " (METHOD = " + method + ")" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) name_ylag = USER.set_name_yend_sp(self.name_y) self.name_x.append(name_ylag) # rho changed to last position self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag) else: raise Exception, "{0} is an unsupported method".format(method)
def __init__(self, y, x, w=None, optim='newton', scalem='phimean', maxiter=100, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, spat_diag=False): n = USER.check_arrays(y, x) USER.check_y(y, n) if w: USER.check_weights(w, y) spat_diag = True x_constant = USER.check_constant(x) BaseProbit.__init__(self, y=y, x=x_constant, w=w, optim=optim, scalem=scalem, maxiter=maxiter) self.title = "CLASSIC PROBIT ESTIMATOR" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_w = USER.set_name_w(name_w, w) SUMMARY.Probit(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=None, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation. Hence, error by regimes has been disabled for this model.") regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y name_x = USER.set_name_x(name_x, x) regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._ols_regimes_multi(x, w, regi_ids, cores, gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran, white_test) else: name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__(self, y=y, x=x, robust=robust, gwk=gwk, sig2n_k=sig2n_k) if regime_err_sep == True and robust == None: y2, x2 = REGI._get_weighted_var( regimes, self.regimes_set, sig2n_k, self.u, y, x) ols2 = BaseOLS(y=y2, x=x2, sig2n_k=sig2n_k) RegressionProps_basic(self, betas=ols2.betas, vm=ols2.vm) self.title = "ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" nonspat_diag = None set_warn( self, "Residuals treated as homoskedastic for the purpose of diagnostics.") else: self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag, spat_diag=spat_diag, moran=moran, white_test=white_test, regimes=True)
def __init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation. Hence, error by regimes has been disabled for this model.") regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y name_x = USER.set_name_x(name_x, x) regi_ids = dict( (r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._ols_regimes_multi(x, w, regi_ids, cores, gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran, white_test) else: name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__( self, y=y, x=x, robust=robust, gwk=gwk, sig2n_k=sig2n_k) if regime_err_sep == True and robust == None: y2, x2 = REGI._get_weighted_var( regimes, self.regimes_set, sig2n_k, self.u, y, x) ols2 = BaseOLS(y=y2, x=x2, sig2n_k=sig2n_k) RegressionProps_basic(self, betas=ols2.betas, vm=ols2.vm) self.title = "ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" nonspat_diag = None set_warn( self, "Residuals treated as homoskedastic for the purpose of diagnostics.") else: self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag, spat_diag=spat_diag, moran=moran, white_test=white_test, regimes=True)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Combo.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, lag_q=lag_q) self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = sp_att(w,self.y,\ self.predy,yend2[:,-1].reshape(self.n,1),self.rho) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_q.extend(USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo(reg=self, w=w, vm=vm)
def __init__(self, y, x, w, method='full', epsilon=0.0000001, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) method = method.upper() if method in ['FULL', 'ORD']: BaseML_Lag.__init__( self, y=y, x=x_constant, w=w, method=method, epsilon=epsilon) # increase by 1 to have correct aic and sc, include rho in count self.k += 1 self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG" + \ " (METHOD = " + method + ")" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) name_ylag = USER.set_name_yend_sp(self.name_y) self.name_x.append(name_ylag) # rho changed to last position self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag) else: raise Exception, "{0} is an unsupported method".format(method)
def __init__(self, y, x, w, method='full', epsilon=0.0000001, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) method = method.upper() BaseML_Error.__init__(self, y=y, x=x_constant, w=w, method=method, epsilon=epsilon) self.title = "MAXIMUM LIKELIHOOD SPATIAL ERROR" + \ " (METHOD = " + method + ")" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_x.append('lambda') self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.ML_Error(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, yend, q, regimes,\ w=None, robust=None, gwk=None, sig2n_k=True,\ spat_diag=False, vm=False, constant_regi='many',\ cols2regi='all', regime_err_sep=False, name_y=None, name_x=None,\ cores=None, name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None, summ=True): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_ds = USER.set_name_ds(name_ds) self.name_regimes = USER.set_name_ds(name_regimes) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) self.name_x_r = USER.set_name_x(name_x, x) + name_yend self.n = n if regime_err_sep == True: name_x = USER.set_name_x(name_x, x) self.y = y if cols2regi == 'all': cols2regi = [True] * (x.shape[1]+yend.shape[1]) self.regimes_set = list(set(regimes)) self.regimes_set.sort() if w: w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(self.cols2regi)+1) set_warn(self,warn) else: regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) w_i = None if set(cols2regi) == set([True]): self._tsls_regimes_multi(x, yend, q, w_i, regi_ids, cores,\ gwk, sig2n_k, robust, spat_diag, vm, name_x, name_yend, name_q) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: name_x = USER.set_name_x(name_x, x,constant=True) q, self.name_q = REGI.Regimes_Frame.__init__(self, q, \ regimes, constant_regi=None, cols2regi='all', names=name_q) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, \ regimes, constant_regi, cols2regi=cols2regi, names=name_x) yend, self.name_yend = REGI.Regimes_Frame.__init__(self, yend, \ regimes, constant_regi=None, \ cols2regi=cols2regi, yend=True, names=name_yend) BaseTSLS.__init__(self, y=y, x=x, yend=yend, q=q, \ robust=robust, gwk=gwk, sig2n_k=sig2n_k) self.name_z = self.name_x + self.name_yend self.name_h = USER.set_name_h(self.name_x, self.name_q) self.chow = REGI.Chow(self) self.robust = USER.set_robust(robust) if summ: self.title = "TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.TSLS(reg=self, vm=vm, w=w, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, w=None, constant_regi='many',\ cols2regi='all', method='full', epsilon=0.0000001,\ regime_lag_sep=False, cores=None, spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_spat_diag(spat_diag, w) name_y = USER.set_name_y(name_y) self.name_y = name_y self.name_x_r = USER.set_name_x(name_x, x) + [USER.set_name_yend_sp(name_y)] self.method = method self.epsilon = epsilon self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes self.regime_lag_sep = regime_lag_sep self._cache = {} self.name_ds = USER.set_name_ds(name_ds) self.name_w = USER.set_name_w(name_w, w) USER.check_regimes(self.regimes_set,self.n,x.shape[1]) if regime_lag_sep == True: if not (set(cols2regi) == set([True]) and constant_regi == 'many'): raise Exception, "All variables must vary by regimes if regime_lag_sep = True." cols2regi += [True] w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) else: cols2regi += [False] if set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids,\ cores=cores, cols2regi=cols2regi, method=method, epsilon=epsilon,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_regimes=self.name_regimes,\ name_w=name_w, name_ds=name_ds) else: #if regime_lag_sep == True: # w = REGI.w_regimes_union(w, w_i, self.regimes_set) name_x = USER.set_name_x(name_x, x,constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, \ regimes, constant_regi, cols2regi=cols2regi[:-1], names=name_x) self.name_x.append("_Global_"+USER.set_name_yend_sp(name_y)) BaseML_Lag.__init__(self, y=y, x=x, w=w, method=method, epsilon=epsilon) self.kf += 1 #Adding a fixed k to account for spatial lag. self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self.regime_lag_sep=regime_lag_sep self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES" + " (METHOD = " + method + ")" SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=0.0000001, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) self.constant_regi = constant_regi self.cols2regi = cols2regi self.regime_err_sep = regime_err_sep self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_w = USER.set_name_w(name_w, w) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n self.y = y x_constant = USER.check_constant(x) name_x = USER.set_name_x(name_x, x) self.name_x_r = name_x cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) self.regime_err_sep = regime_err_sep if regime_err_sep == True: if set(cols2regi) == set([True]): self._error_regimes_multi(y, x, regimes, w, cores, method, epsilon, cols2regi, vm, name_x, spat_diag) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: regimes_att = {} regimes_att['x'] = x_constant regimes_att['regimes'] = regimes regimes_att['cols2regi'] = cols2regi x, name_x = REGI.Regimes_Frame.__init__(self, x_constant, regimes, constant_regi=None, cols2regi=cols2regi, names=name_x) BaseML_Error.__init__( self, y=y, x=x, w=w, method=method, epsilon=epsilon, regimes_att=regimes_att) self.title = "MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES" + \ " (METHOD = " + method + ")" self.name_x = USER.set_name_x(name_x, x, constant=True) self.name_x.append('lambda') self.kf += 1 # Adding a fixed k to account for lambda. self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self._cache = {} SUMMARY.ML_Error( reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=0.0000001, regime_err_sep=False, cores=None, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) self.constant_regi = constant_regi self.cols2regi = cols2regi self.regime_err_sep = regime_err_sep self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_w = USER.set_name_w(name_w, w) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n self.y = y x_constant = USER.check_constant(x) name_x = USER.set_name_x(name_x, x) self.name_x_r = name_x cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) self.regime_err_sep = regime_err_sep if regime_err_sep == True: if set(cols2regi) == set([True]): self._error_regimes_multi(y, x, regimes, w, cores, method, epsilon, cols2regi, vm, name_x, spat_diag) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: regimes_att = {} regimes_att['x'] = x_constant regimes_att['regimes'] = regimes regimes_att['cols2regi'] = cols2regi x, name_x = REGI.Regimes_Frame.__init__(self, x_constant, regimes, constant_regi=None, cols2regi=cols2regi, names=name_x) BaseML_Error.__init__( self, y=y, x=x, w=w, method=method, epsilon=epsilon, regimes_att=regimes_att) self.title = "MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES" + \ " (METHOD = " + method + ")" self.name_x = USER.set_name_x(name_x, x, constant=True) self.name_x.append('lambda') self.kf += 1 # Adding a fixed k to account for lambda. self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self._cache = {} SUMMARY.ML_Error(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes,\ w=None, robust=None, gwk=None, sig2n_k=True,\ nonspat_diag=True, spat_diag=False, moran=False,\ vm=False, constant_regi='many', cols2regi='all',\ regime_err_sep=False, cores=None,\ name_y=None, name_x=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n if regime_err_sep == True: name_x = USER.set_name_x(name_x, x) self.y = y if cols2regi == 'all': cols2regi = [True] * (x.shape[1]) self.regimes_set = list(set(regimes)) self.regimes_set.sort() if w: w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(self.cols2regi)+1) set_warn(self,warn) else: regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) w_i = None if set(cols2regi) == set([True]): self._ols_regimes_multi(x, w_i, regi_ids, cores,\ gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: name_x = USER.set_name_x(name_x, x,constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x,\ regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__(self, y=y, x=x, robust=robust, gwk=gwk, \ sig2n_k=sig2n_k) self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag,\ spat_diag=spat_diag, moran=moran, regimes=True)
def __init__(self, y, x, w,\ vm=False, name_y=None, name_x=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) BaseGM_Error.__init__(self, y=y, x=x_constant, w=w.sparse) self.title = "SPATIALLY WEIGHTED LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_x.append('lambda') self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Error(reg=self, w=w, vm=vm)
def __init__(self, y, x, w=None, optim='newton',scalem='phimean',maxiter=100,\ vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, \ spat_diag=False): n = USER.check_arrays(y, x) USER.check_y(y, n) if w: USER.check_weights(w, y) spat_diag = True x_constant = USER.check_constant(x) BaseProbit.__init__(self,y=y,x=x_constant,w=w,optim=optim,scalem=scalem,maxiter=maxiter) self.title = "CLASSIC PROBIT ESTIMATOR" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_w = USER.set_name_w(name_w, w) SUMMARY.Probit(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) y = USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) x_constant = USER.check_constant(x) BaseOLS.__init__(self, y=y, x=x_constant, robust=robust, gwk=gwk, sig2n_k=sig2n_k) self.title = "ORDINARY LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag, spat_diag=spat_diag, moran=moran, white_test=white_test)
def __init__(self, y, x, yend, q, w,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) BaseGM_Endog_Error.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend, q=q) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Endog_Error(reg=self, w=w, vm=vm)
def __init__(self, y, x,\ w=None,\ robust=None, gwk=None, sig2n_k=True,\ nonspat_diag=True, spat_diag=False, moran=False,\ vm=False, name_y=None, name_x=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) x_constant = USER.check_constant(x) BaseOLS.__init__(self, y=y, x=x_constant, robust=robust,\ gwk=gwk, sig2n_k=sig2n_k) self.title = "ORDINARY LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag,\ spat_diag=spat_diag, moran=moran)
def __init__(self, y, x, yend, q, regimes, w=None, robust=None, gwk=None, sig2n_k=True, spat_diag=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, name_y=None, name_x=None, cores=False, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, summ=True): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_ds = USER.set_name_ds(name_ds) self.name_regimes = USER.set_name_ds(name_regimes) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) self.name_x_r = USER.set_name_x(name_x, x) + name_yend self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation for 2SLS models. Hence, the error by regimes has been disabled for this model." ) regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set( [True]) and constant_regi == 'many': name_x = USER.set_name_x(name_x, x) self.y = y regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._tsls_regimes_multi(x, yend, q, w, regi_ids, cores, gwk, sig2n_k, robust, spat_diag, vm, name_x, name_yend, name_q) else: name_x = USER.set_name_x(name_x, x, constant=True) q, self.name_q = REGI.Regimes_Frame.__init__(self, q, regimes, constant_regi=None, cols2regi='all', names=name_q) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi=cols2regi, names=name_x) yend, self.name_yend = REGI.Regimes_Frame.__init__( self, yend, regimes, constant_regi=None, cols2regi=cols2regi, yend=True, names=name_yend) if regime_err_sep == True and robust == None: robust = 'white' BaseTSLS.__init__(self, y=y, x=x, yend=yend, q=q, robust=robust, gwk=gwk, sig2n_k=sig2n_k) self.title = "TWO STAGE LEAST SQUARES - REGIMES" if robust == 'ogmm': _optimal_weight(self, sig2n_k) self.name_z = self.name_x + self.name_yend self.name_h = USER.set_name_h(self.name_x, self.name_q) self.chow = REGI.Chow(self) self.robust = USER.set_robust(robust) if summ: SUMMARY.TSLS(reg=self, vm=vm, w=w, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=True, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x,constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n if cols2regi == 'all': if yend!=None: cols2regi = [True] * (x.shape[1]+yend.shape[1]) else: cols2regi = [True] * (x.shape[1]) if regime_lag_sep == True: cols2regi += [True] self.regimes_set = list(set(regimes)) self.regimes_set.sort() w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) if not regime_err_sep: w = REGI.w_regimes_union(w, w_i, self.regimes_set) else: cols2regi += [False] if regime_err_sep == True: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." self.cols2regi = cols2regi if regime_lag_sep == True and regime_err_sep == True: if set(cols2regi) == set([True]): self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, name_y=name_y,\ name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:,-1].reshape(self.n,1)) else: self.predy_e, self.e_pred = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) self.regime_lag_sep=regime_lag_sep self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend( USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation for Spatial Lag models. Hence, error and lag by regimes have been disabled for this model." ) regime_err_sep = False regime_lag_sep = False self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set( [True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores, robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2, regimes=regimes, w=w, robust=robust, gwk=gwk, sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm, constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.rho = self.betas[-1] self.predy_e, self.e_pred, warn = sp_att( w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep self.title = "SPATIAL " + self.title SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, yend, q, regimes,\ w=None, robust=None, gwk=None, sig2n_k=True,\ spat_diag=False, vm=False, constant_regi='many',\ cols2regi='all', regime_err_sep=True, name_y=None, name_x=None,\ cores=None, name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None, summ=True): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_ds = USER.set_name_ds(name_ds) self.name_regimes = USER.set_name_ds(name_regimes) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) self.name_x_r = USER.set_name_x(name_x, x) + name_yend self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set) self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': name_x = USER.set_name_x(name_x, x) self.y = y if w: w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(self.cols2regi)+1) set_warn(self,warn) else: regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) w_i = None self._tsls_regimes_multi(x, yend, q, w_i, regi_ids, cores,\ gwk, sig2n_k, robust, spat_diag, vm, name_x, name_yend, name_q) else: name_x = USER.set_name_x(name_x, x,constant=True) q, self.name_q = REGI.Regimes_Frame.__init__(self, q, \ regimes, constant_regi=None, cols2regi='all', names=name_q) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, \ regimes, constant_regi, cols2regi=cols2regi, names=name_x) yend, self.name_yend = REGI.Regimes_Frame.__init__(self, yend, \ regimes, constant_regi=None, \ cols2regi=cols2regi, yend=True, names=name_yend) BaseTSLS.__init__(self, y=y, x=x, yend=yend, q=q, \ robust=robust, gwk=gwk, sig2n_k=sig2n_k) if regime_err_sep == True and robust == None: """ # Weighted x, y, yend and q approach: y2,x2,yend2,q2 = REGI._get_weighted_var(regimes,self.regimes_set,sig2n_k,self.u,y,x,yend,q) tsls2 = BaseTSLS(y=y2, x=x2, yend=yend2, q=q2, sig2n_k=sig2n_k) # Updating S_hat to S_tilde approach: betas2, predy2, resid2, vm2 = self._optimal_weight(sig2n_k) RegressionProps_basic(self,betas=betas2,predy=predy2,u=resid2,vm=vm2,sig2=False) """ betas2, vm2 = self._optimal_weight(sig2n_k) RegressionProps_basic(self,betas=betas2,vm=vm2,sig2=False) self.title = "TWO STAGE LEAST SQUARES - REGIMES (Optimal-Weighted GMM)" robust = None set_warn(self,"Residuals treated as homoskedastic for the purpose of diagnostics.") else: self.title = "TWO STAGE LEAST SQUARES - REGIMES" self.name_z = self.name_x + self.name_yend self.name_h = USER.set_name_h(self.name_x, self.name_q) self.chow = REGI.Chow(self) self.robust = USER.set_robust(robust) if summ: SUMMARY.TSLS(reg=self, vm=vm, w=w, spat_diag=spat_diag, regimes=True)
def __init__( self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi="many", cols2regi="all", regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, ): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == "hac": set_warn( self, "Error by regimes is incompatible with HAC estimation for Spatial Lag models. Hence, error and lag by regimes have been disabled for this model.", ) regime_err_sep = False regime_lag_sep = False self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes( w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1 ) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == "many": self.y = y self.GM_Lag_Regimes_Multi( y, x, w_i, w, regi_ids, yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores, robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, ) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__( self, y=y, x=x, yend=yend2, q=q2, regimes=regimes, w=w, robust=robust, gwk=gwk, sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm, constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, summ=False, ) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.rho = self.betas[-1] self.predy_e, self.e_pred, warn = sp_att( w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho ) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep self.title = "SPATIAL " + self.title SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=False, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x,constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set) self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep,\ name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:,-1].reshape(self.n,1)) else: self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self,warn) self.regime_lag_sep=regime_lag_sep if regime_err_sep == True: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" else: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=0.0000001, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_spat_diag(spat_diag, w) name_y = USER.set_name_y(name_y) self.name_y = name_y self.name_x_r = USER.set_name_x( name_x, x) + [USER.set_name_yend_sp(name_y)] self.method = method self.epsilon = epsilon self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes self.regime_lag_sep = regime_lag_sep self._cache = {} self.name_ds = USER.set_name_ds(name_ds) self.name_w = USER.set_name_w(name_w, w) USER.check_regimes(self.regimes_set, self.n, x.shape[1]) # regime_err_sep is ignored, always False if regime_lag_sep == True: if not (set(cols2regi) == set([True]) and constant_regi == 'many'): raise Exception, "All variables must vary by regimes if regime_lag_sep = True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes( w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, cores=cores, cols2regi=cols2regi, method=method, epsilon=epsilon, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_regimes=self.name_regimes, name_w=name_w, name_ds=name_ds) else: # if regime_lag_sep == True: # w = REGI.w_regimes_union(w, w_i, self.regimes_set) name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi=cols2regi[:-1], names=name_x) self.name_x.append("_Global_" + USER.set_name_yend_sp(name_y)) BaseML_Lag.__init__( self, y=y, x=x, w=w, method=method, epsilon=epsilon) self.kf += 1 # Adding a fixed k to account for spatial lag in Chow # adding a fixed k to account for spatial lag in aic, sc self.k += 1 self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self.regime_lag_sep = regime_lag_sep self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES" + \ " (METHOD = " + method + ")" SUMMARY.ML_Lag( reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=False, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend( USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set) self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set( [True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep,\ name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep if regime_err_sep == True: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" else: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, yend, q, regimes, w=None, robust=None, gwk=None, sig2n_k=True, spat_diag=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, name_y=None, name_x=None, cores=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, summ=True): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_ds = USER.set_name_ds(name_ds) self.name_regimes = USER.set_name_ds(name_regimes) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) self.name_x_r = USER.set_name_x(name_x, x) + name_yend self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, yend=yend, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation for 2SLS models. Hence, the error by regimes has been disabled for this model.") regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': name_x = USER.set_name_x(name_x, x) self.y = y regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._tsls_regimes_multi(x, yend, q, w, regi_ids, cores, gwk, sig2n_k, robust, spat_diag, vm, name_x, name_yend, name_q) else: name_x = USER.set_name_x(name_x, x, constant=True) q, self.name_q = REGI.Regimes_Frame.__init__(self, q, regimes, constant_regi=None, cols2regi='all', names=name_q) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi=cols2regi, names=name_x) yend, self.name_yend = REGI.Regimes_Frame.__init__(self, yend, regimes, constant_regi=None, cols2regi=cols2regi, yend=True, names=name_yend) if regime_err_sep == True and robust == None: robust = 'white' BaseTSLS.__init__(self, y=y, x=x, yend=yend, q=q, robust=robust, gwk=gwk, sig2n_k=sig2n_k) self.title = "TWO STAGE LEAST SQUARES - REGIMES" if robust == 'ogmm': _optimal_weight(self, sig2n_k) self.name_z = self.name_x + self.name_yend self.name_h = USER.set_name_h(self.name_x, self.name_q) self.chow = REGI.Chow(self) self.robust = USER.set_robust(robust) if summ: SUMMARY.TSLS(reg=self, vm=vm, w=w, spat_diag=spat_diag, regimes=True)