def get_vary_detail_info(vary_detail_dict, uid_list): results = {} #get uname try: user_portrait_result = es_user_portrait.mget(index=portrait_index_name, doc_type=portrait_index_type,\ body={'ids':uid_list})['docs'] except: user_portrait_result = [] uname_dict = {} for portrait_item in user_portrait_result: uid = portrait_item['_id'] if portrait_item['found']==True: uname = portrait_item['_source']['uname'] uname_dict[uid] = uname else: uname_dict[uid] = uid #get new vary detail information for vary_pattern in vary_detail_dict: user_info_list = vary_detail_dict[vary_pattern] new_pattern_list = [] for user_item in user_info_list: uid = user_item[0] uname= uname_dict[uid] start_date = ts2datetime(int(user_item[1])) end_date = ts2datetime(int(user_item[2])) new_pattern_list.append([uid, uname, start_date, end_date]) results[vary_pattern] = new_pattern_list return results
def recommentation_in_auto(seatch_date, submit_user): results = [] #run type if RUN_TYPE == 1: now_date = ts2datetime(time.time() - DAY) else: now_date = ts2datetime(datetime2ts(RUN_TEST_TIME) - DAY) recomment_hash_name = 'recomment_' + now_date + '_auto' recomment_influence_hash_name = 'recomment_' + now_date + '_influence' recomment_sensitive_hash_name = 'recomment_' + now_date + '_sensitive' recomment_compute_hash_name = 'compute' #step1: get auto auto_result = r.hget(recomment_hash_name, 'auto') if auto_result: auto_user_list = json.loads(auto_result) else: auto_user_list = [] #step2: get admin user result admin_result = r.hget(recomment_hash_name, submit_user) if admin_result: admin_user_list = json.loads(admin_result) else: admin_user_list = [] #step3: get union user and filter compute/influence/sensitive union_user_auto_set = set(auto_user_list) | set(admin_user_list) influence_user = set(r.hkeys(recomment_influence_hash_name)) sensitive_user = set(r.hkeys(recomment_sensitive_hash_name)) compute_user = set(r.hkeys(recomment_compute_hash_name)) filter_union_user = union_user_auto_set - (influence_user | sensitive_user | compute_user) auto_user_list = list(filter_union_user) #step4: get user detail results = get_user_detail(now_date, auto_user_list, 'show_in', 'auto') return results
def get_geo_track(uid): date_results = [] # {'2013-09-01':[(geo1, count1),(geo2, count2)], '2013-09-02'...} now_ts = time.time() now_date = ts2datetime(now_ts) #test now_date = '2013-09-08' ts = datetime2ts(now_date) city_list = [] city_set = set() for i in range(7, 0, -1): timestamp = ts - i*24*3600 #print 'timestamp:', ts2datetime(timestamp) ip_dict = dict() results = r_cluster.hget('ip_'+str(timestamp), uid) ip_dict = dict() date = ts2datetime(timestamp) date_key = '-'.join(date.split('-')[1:]) if results: ip_dict = json.loads(results) geo_dict = ip_dict2geo(ip_dict) city_list.extend(geo_dict.keys()) sort_geo_dict = sorted(geo_dict.items(), key=lambda x:x[1], reverse=True) date_results.append([date_key, sort_geo_dict[:2]]) else: date_results.append([date_key, []]) print 'results:', date_results city_set = set(city_list) geo_conclusion = get_geo_conclusion(uid, city_set) return [date_results, geo_conclusion]
def get_user_detail(date, input_result, status, user_type="influence", auth=""): bci_date = ts2datetime(datetime2ts(date) - DAY) results = [] if status=='show_in': uid_list = input_result if status=='show_compute': uid_list = input_result.keys() if status=='show_in_history': uid_list = input_result.keys() if date!='all': index_name = 'bci_' + ''.join(bci_date.split('-')) else: now_ts = time.time() now_date = ts2datetime(now_ts) index_name = 'bci_' + ''.join(now_date.split('-')) tmp_ts = str(datetime2ts(date) - DAY) sensitive_string = "sensitive_score_" + tmp_ts query_sensitive_body = { "query":{ "match_all":{} }, "size":1, "sort":{sensitive_string:{"order":"desc"}} } try: top_sensitive_result = es_bci_history.search(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body=query_sensitive_body, _source=False, fields=[sensitive_string])['hits']['hits'] top_sensitive = top_sensitive_result[0]['fields'][sensitive_string][0] except Exception, reason: print Exception, reason top_sensitive = 400
def count_hot_uid(uid, start_time, stop_time, keywords_list): query_body = { "query":{ "filtered":{ "filter":{ "bool":{ "must":[ {"range":{ "timestamp":{ "gte":start_time, "lt": stop_time } }}, {"term": {"root_uid": uid}} ] } } # "query":{ # "bool":{ # "should":[ # ] # } # } } } } if keywords_list: query_body['query']['filtered']['filter']['bool']['must'].append({"terms": {"keywords_string": keywords_list}}) #for word in keywords_list: #query_body['query']['filtered']['query']['bool']['should'].append({'wildcard':{"text": "*"+word+"*"}}) count = 0 datetime = ts2datetime(float(stop_time)) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) if exist_es: count = es_text.count(index=index_name, doc_type=flow_text_index_type, body=query_body)["count"] else: count = 0 datetime_1 = ts2datetime(float(start_time)) if datetime_1 == datetime: pass else: ts = float(stop_time) while 1: ts = ts-day_time datetime = ts2datetime(ts) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) if exist_es: count = es_text.count(index=index_name, doc_type=flow_text_index_type, body=query_body)["count"] else: count += 0 if datetime_1 == datetime: break return count
def get_recommentation(submit_user): if RUN_TYPE: now_ts = time.time() else: now_ts = datetime2ts(RUN_TEST_TIME) in_portrait_set = set(r.hkeys("compute")) result = [] for i in range(7): iter_ts = now_ts - i*DAY iter_date = ts2datetime(iter_ts) submit_user_recomment = "recomment_" + submit_user + "_" + str(iter_date) bci_date = ts2datetime(iter_ts - DAY) submit_user_recomment = r.hkeys(submit_user_recomment) bci_index_name = "bci_" + bci_date.replace('-', '') exist_bool = es_cluster.indices.exists(index=bci_index_name) if not exist_bool: continue if submit_user_recomment: user_bci_result = es_cluster.mget(index=bci_index_name, doc_type="bci", body={'ids':submit_user_recomment}, _source=True)['docs'] user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':submit_user_recomment}, _source=True)['docs'] max_evaluate_influ = get_evaluate_max(bci_index_name) for i in range(len(submit_user_recomment)): uid = submit_user_recomment[i] bci_dict = user_bci_result[i] profile_dict = user_profile_result[i] try: bci_source = bci_dict['_source'] except: bci_source = None if bci_source: influence = bci_source['user_index'] influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10) influence = influence * 100 else: influence = '' try: profile_source = profile_dict['_source'] except: profile_source = None if profile_source: uname = profile_source['nick_name'] location = profile_source['user_location'] fansnum = profile_source['fansnum'] statusnum = profile_source['statusnum'] else: uname = '' location = '' fansnum = '' statusnum = '' if uid in in_portrait_set: in_portrait = "1" else: in_portrait = "0" recomment_day = iter_date result.append([iter_date, uid, uname, location, fansnum, statusnum, influence, in_portrait]) return result
def count_hot_uid(uid, start_time, stop_time): query_body = { "query":{ "filtered":{ "filter":{ "bool":{ "must":[ {"range":{ "timestamp":{ "gte":start_time, "lt": stop_time } }}, {"term": {"root_uid": uid}} ] } } # "query":{ # "bool":{ # "should":[ # ] # } # } } } } count = 0 datetime = ts2datetime(float(stop_time)) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) if exist_es: count = es_text.count(index=index_name, doc_type=flow_text_index_type, body=query_body)["count"] else: count = 0 datetime_1 = ts2datetime(float(start_time)) if datetime_1 == datetime: pass else: ts = float(stop_time) while 1: ts = ts-day_time datetime = ts2datetime(ts) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) if exist_es: count = es_text.count(index=index_name, doc_type=flow_text_index_type, body=query_body)["count"] else: count += 0 if datetime_1 == datetime: break return count
def get_psycho_status(uid_list): results = {} uid_sentiment_dict = {} #time for es_flow_text now_ts = time.time() now_date_ts = datetime2ts(ts2datetime(now_ts)) #run_type if RUN_TYPE == 0: now_date_ts = datetime2ts(RUN_TEST_TIME) start_date_ts = now_date_ts - DAY * WEEK for i in range(0, WEEK): iter_date_ts = start_date_ts + DAY * i flow_text_index_date = ts2datetime(iter_date_ts) flow_text_index_name = flow_text_index_name_pre + flow_text_index_date try: flow_text_exist = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body={'query':{'filtered':{'filter':{'terms':{'uid': uid_list}}}}, 'size': MAX_VALUE}, _source=False, fields=['uid', 'sentiment'])['hits']['hits'] except: flow_text_exist = [] for flow_text_item in flow_text_exist: uid = flow_text_item['fields']['uid'][0] sentiment = flow_text_item['fields']['sentiment'][0] if uid in uid_sentiment_dict: try: uid_sentiment_dict[uid][str(sentiment)] += 1 except: uid_sentiment_dict[uid][str(sentiment)] = 1 else: uid_sentiment_dict[uid] = {str(sentiment): 1} #compute first and second psycho_status for uid in uid_list: results[uid] = {'first':{}, 'second':{}} try: user_sentiment_result = uid_sentiment_dict[uid] except: user_sentiment_result = {} all_count = sum(user_sentiment_result.values()) #compute second level sentiment---negative type sentiment second_sentiment_count_list = [user_sentiment_result[item] for item in user_sentiment_result if item in SENTIMENT_SECOND] second_sentiment_all_count = sum(second_sentiment_count_list) for sentiment_item in SENTIMENT_SECOND: try: results[uid]['second'][sentiment_item] = float(user_sentiment_result[sentiment_item]) / all_count except: results[uid]['second'][sentiment_item] = 0 #compute first level sentiment---middle, postive, negative user_sentiment_result['7'] = second_sentiment_all_count for sentiment_item in SENTIMENT_FIRST: try: sentiment_ratio = float(user_sentiment_result[sentiment_item]) / all_count except: sentiment_ratio = 0 results[uid]['first'][sentiment_item] = sentiment_ratio return results
def get_social_inter_content(uid1, uid2, type_mark): weibo_list = [] #get two type relation about uid1 and uid2 #search weibo list now_ts = int(time.time()) #run_type if RUN_TYPE == 1: now_date_ts = datetime2ts(ts2datetime(now_ts)) else: now_date_ts = datetime2ts(RUN_TEST_TIME) #uid2uname uid2uname = {} try: portrait_result = es_user_portrait.mget(index=portrait_index_name, doc_type=portrait_index_type ,\ body={'ids': [uid1, uid2]}, _source=False, fields=['uid', 'uname'])['docs'] except: portrait_result = [] for item in portrait_result: uid = item['_id'] if item['found'] == True: uname = item['fields']['uname'][0] uid2uname[uid] = uname else: uid2uname[uid] = 'unknown' #iter date to search weibo list for i in range(7, 0, -1): iter_date_ts = now_date_ts - i*DAY iter_date = ts2datetime(iter_date_ts) flow_text_index_name = flow_text_index_name_pre + str(iter_date) query = [] query.append({'bool':{'must':[{'term':{'uid':uid1}}, {'term':{'directed_uid': int(uid2)}}]}}) if type_mark=='out': query.append({'bool':{'must':[{'term':{'uid':uid2}}, {'term':{'directed_uid': int(uid1)}}]}}) try: flow_text_result = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body={'query': {'bool':{'should': query}}, 'sort':[{'timestamp':{'order': 'asc'}}], 'size':MAX_VALUE})['hits']['hits'] except: flow_text_result = [] for flow_text in flow_text_result: source = flow_text['_source'] weibo = {} weibo['timestamp'] = source['timestamp'] weibo['ip'] = source['ip'] weibo['geo'] = source['geo'] weibo['text'] = '\t'.join(source['text'].split('&')) weibo['uid'] = source['uid'] weibo['uname'] = uid2uname[weibo['uid']] weibo['directed_uid'] = str(source['directed_uid']) weibo['directed_uname'] = uid2uname[str(source['directed_uid'])] weibo_list.append(weibo) return weibo_list
def query_mid_list(ts, keywords_list, time_segment, social_sensors=[]): query_body = { "query": { "filtered": { "filter": { "bool": { "must": [ {"range": { "timestamp": { "gte": ts - time_segment, "lt": ts } }}, {"terms": {"keywords_string": keywords_list}} ] } } } }, "size": 10000 } if social_sensors: query_body['query']['filtered']['filter']['bool']['must'].append({"terms": {"uid": social_sensors}}) datetime = ts2datetime(ts) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) if exist_es: search_results = es_text.search(index=index_name, doc_type=flow_text_index_type, body=query_body, fields=["root_mid"])["hits"]["hits"] else: search_results = [] origin_mid_list = set() # all related weibo mid list if search_results: for item in search_results: #if item.get("fields", ""): # origin_mid_list.append(item["fields"]["root_mid"][0]) #else: origin_mid_list.add(item["_id"]) datetime_1 = ts2datetime(ts-time_segment) index_name_1 = flow_text_index_name_pre + datetime_1 exist_bool = es_text.indices.exists(index_name_1) if datetime != datetime_1 and exist_bool: search_results_1 = es_text.search(index=index_name_1, doc_type=flow_text_index_type, body=query_body, fields=['root_mid'])["hits"]["hits"] if search_results_1: for item in search_results_1: #if item.get("fields", ""): # origin_mid_list.append(item["fields"]["root_mid"][0]) #else: origin_mid_list.add(item["_id"]) return list(origin_mid_list)
def query_hot_mid(ts, keywords_list, text_type,size=100): query_body = { "query":{ "filtered":{ "filter":{ "bool":{ "must":[ {"range":{ "timestamp":{ "gte":ts - time_interval, "lt": ts } }}, {"terms": {"keywords_string": keywords_list}}, {"term": {"message_type": "0"}} ] } } } }, "aggs":{ "all_interests":{ "terms":{"field": "root_mid", "size": size} } } } datetime = ts2datetime(ts) datetime_1 = ts2datetime(ts-time_interval) index_name = flow_text_index_name_pre + datetime exist_es = es_text.indices.exists(index_name) index_name_1 = flow_text_index_name_pre + datetime_1 exist_bool_1 = es_text.indices.exists(index_name_1) print datetime, datetime_1 if datetime == datetime_1 and exist_es: search_results = es_text.search(index=index_name, doc_type=flow_text_index_type, body=query_body)["aggregations"]["all_interests"]["buckets"] elif datetime != datetime_1 and exist_bool_1: search_results = es_text.search(index=index_name_1, doc_type=flow_text_index_type, body=query_body)["aggregations"]["all_interests"]["buckets"] else: search_results = [] hot_mid_list = [] if search_results: for item in search_results: print item temp = [] temp.append(item['key']) temp.append(item['doc_count']) hot_mid_list.append(temp) #print hot_mid_list return hot_mid_list
def new_get_user_weibo(uid, sort_type): results = [] weibo_list = [] now_date = ts2datetime(time.time()) #run_type if RUN_TYPE == 0: now_date = RUN_TEST_TIME sort_type = 'timestamp' #step1:get user name try: user_profile_result = es_user_profile.get(index=profile_index_name, doc_type=profile_index_type,\ id=uid, _source=False, fields=['nick_name']) except: user_profile_result = {} if user_profile_result: uname = user_profile_result['fields']['nick_name'][0] else: uname = '' #step2:get user weibo for i in range(7, 0, -1): iter_date = ts2datetime(datetime2ts(now_date) - i * DAY) index_name = flow_text_index_name_pre + iter_date try: weibo_result = es_flow_text.search(index=index_name, doc_type=flow_text_index_type,\ body={'query':{'filtered':{'filter':{'term': {'uid': uid}}}}, 'sort':sort_type, 'size':100})['hits']['hits'] except: weibo_result = [] if weibo_result: weibo_list.extend(weibo_result) print 'weibo_list:', weibo_list[0] sort_weibo_list = sorted(weibo_list, key=lambda x:x['_source'][sort_type], reverse=True)[:100] for weibo_item in sort_weibo_list: source = weibo_item['_source'] mid = source['mid'] uid = source['uid'] text = source['text'] ip = source['geo'] timestamp = source['timestamp'] date = ts2date(timestamp) sentiment = source['sentiment'] #run_type if RUN_TYPE == 1: retweet_count = source['retweet_count'] comment_count = source['comment_count'] sensitive_score = source['sensitive'] else: retweet_count = 0 comment_count = 0 sensitive_score = 0 city = ip2city(ip) results.append([mid, uid, text, ip, city,timestamp, date, retweet_count, comment_count, sensitive_score]) return results
def new_get_user_location(uid): results = {} now_date = ts2datetime(time.time()) now_date_ts = datetime2ts(now_date) #run type if RUN_TYPE == 0: now_date_ts = datetime2ts(RUN_TEST_TIME) - DAY now_date = ts2datetime(now_date_ts) #now ip try: ip_time_string = r_cluster.hget('new_ip_'+str(now_date_ts), uid) except Exception, e: raise e
def read_flow_text_sentiment(uid_list): """ 读取用户微博(返回结果有微博情绪标签): 输入数据:uid_list(字符串型列表) 输出数据:word_dict(用户分词结果字典),weibo_list(用户微博列表) word_dict示例:{uid1:{'w1':f1,'w2':f2...}...} weibo_list示例:[[uid1,text1,s1,ts1],[uid2,text2,s2,ts2],...](每一条记录对应四个值:uid、text、sentiment、timestamp) """ word_dict = dict() # 词频字典 weibo_list = [] # 微博列表 now_ts = time.time() now_date_ts = datetime2ts(ts2datetime(now_ts)) now_date_ts = datetime2ts("2013-09-08") start_date_ts = now_date_ts - DAY * WEEK for i in range(0, WEEK): iter_date_ts = start_date_ts + DAY * i flow_text_index_date = ts2datetime(iter_date_ts) flow_text_index_name = flow_text_index_name_pre + flow_text_index_date print flow_text_index_name try: flow_text_exist = es_flow_text.search( index=flow_text_index_name, doc_type=flow_text_index_type, body={"query": {"filtered": {"filter": {"terms": {"uid": uid_list}}}}, "size": MAX_VALUE}, _source=False, fields=["text", "uid", "sentiment", "keywords_dict", "timestamp"], )["hits"]["hits"] except: flow_text_exist = [] for flow_text_item in flow_text_exist: uid = flow_text_item["fields"]["uid"][0].encode("utf-8") text = flow_text_item["fields"]["text"][0].encode("utf-8") sentiment = int(flow_text_item["fields"]["sentiment"][0]) ts = flow_text_item["fields"]["timestamp"][0] keywords_dict = json.loads(flow_text_item["fields"]["keywords_dict"][0]) keywords_dict = json.dumps(keywords_dict, encoding="UTF-8", ensure_ascii=False) keywords_dict = eval(keywords_dict) if word_dict.has_key(uid): item_dict = Counter(word_dict[uid]) keywords_dict = Counter(keywords_dict) item_dict = dict(item_dict + keywords_dict) word_dict[uid] = item_dict else: word_dict[uid] = keywords_dict weibo_list.append([uid, text, sentiment, ts]) return word_dict, weibo_list
def show_vary_detail(task_name, submit_user, vary_pattern): results = [] task_id = submit_user + '-' + task_name #identify the task_id exist try: source = es_group_result.get(index=group_index_name, doc_type=group_index_type,\ id=task_id)['_source'] except: return 'group task is not exist' #identify the task status=1 status = source['status'] if status != 1: return 'group task is not completed' #get vary detail geo try: vary_detail_geo = json.loads(source['vary_detail_geo']) except: vary_detail_geo = {} if vary_detail_geo == {}: return 'vary detail geo none' #get vary_detail vary_pattern_list = vary_pattern.split('-') vary_pattern_key = '&'.join(vary_pattern_list) uid_ts_list = vary_detail_geo[vary_pattern_dict] uid_list = [item[0] for item in uid_ts_list] #get user name try: user_portrait_result = es_user_portrait.mget(index=portrait_index_name, doc_type=portrait_index_type,\ body={'ids':uid_list})['docs'] except: user_portrait_result = [] uname_dict = {} for portrait_item in user_portrait_result: uid = portrait_item['_id'] if portrait_item['found']==True: uname = portrait_item['_source']['uname'] uname_dict[uid] = uname else: uname_dict[uid] = uid #get vary detail new_detail = [] for vary_item in uid_ts_list: uname = uname_dict[vary_item[0]] start_date = ts2datetime(vary_item[1]) end_date = ts2datetime(vary_item[2]) new_detail.append([vary_item[0], uname, start_date, end_date]) return new_detail
def get_repost_weibo(mid, weibo_timestamp): repost_result = [] index_date = ts2datetime(weibo_timestamp) index_name = flow_text_index_name_pre + index_date query_body = { 'query':{ 'bool':{ 'must':[ {'term':{'root_mid': mid}}, {'range':{'timestamp':{'gte': weibo_timestamp}}}, {'term':{'message_type': 2}} ] } } } try: flow_text_result = es_flow_text.search(index=index_name, doc_type=flow_text_index_type,\ body=query_body)['hits']['hits'] except: flow_text_result = [] repost_uid_list = [item['_source']['uid'] for item in flow_text_result] repost_user_info_dict = get_user_profile_weibo(repost_uid_list) statuses = [] for item in flow_text_result: item_source = item['_source'] item_source['user'] = repost_user_info_dict[item['uid']] statuses.append(item_source) return statuses
def search_sentiment_all_portrait(start_date, end_date, time_segment): sentiment_ts_count_dict = {} start_ts = datetime2ts(start_date) end_ts = datetime2ts(end_date) search_date_list = [] domain_list = domain_en2ch_dict.keys() for i in range(start_ts, end_ts + DAY, DAY): iter_date = ts2datetime(i) search_date_list.append(iter_date) for sentiment in sentiment_type_list: sentiment_ts_count_dict[sentiment] = [] for date_item in search_date_list: ts_count_result_list = [] for domain in domain_list: iter_r_name = r_domain_sentiment_pre + date_item + '_' + sentiment + '_' + domain #get ts_count_dict in one day ts_count_result = R_DOMAIN_SENTIMENT.hgetall(iter_r_name) ts_count_result_list.append(ts_count_result) #union all domain to get all portrait all_ts_count_result = union_dict(ts_count_result_list) #get x and y list by timesegment new_ts_count_dict = get_new_ts_count_dict(all_ts_count_result, time_segment, date_item) sort_new_ts_count = sorted(new_ts_count_dict.items(), key=lambda x:x[0]) sentiment_ts_count_dict[sentiment].extend(sort_new_ts_count) return sentiment_ts_count_dict
def get_db_num(timestamp): date = ts2datetime(timestamp) date_ts = datetime2ts(date) db_number = ((date_ts - r_beigin_ts) / (DAY * 7)) % 2 + 1 if RUN_TYPE == 0: db_number = 1 return db_number
def get_user_geo(uid): result = [] user_geo_result = {} user_ip_dict = {} user_ip_result = dict() now_ts = time.time() now_date = ts2datetime(now_ts) ts = datetime2ts(now_date) #test ts = datetime2ts('2013-09-08') for i in range(1, 8): ts = ts - 3600*24 results = r_cluster.hget('ip_'+str(ts), uid) if results: ip_dict = json.loads(results) for ip in ip_dict: try: user_ip_result[ip] += ip_dict[ip] except: user_ip_result[ip] = ip_dict[ip] #print 'user_ip_result:', user_ip_result user_geo_dict = ip2geo(user_ip_result) user_geo_result = sorted(user_geo_dict.items(), key=lambda x:x[1], reverse=True) return user_geo_result
def get_user_geo(uid): result = [] user_geo_result = {} user_ip_dict = {} user_ip_result = dict() now_ts = time.time() now_date = ts2datetime(now_ts) #run_type if RUN_TYPE == 1: ts = datetime2ts(now_date) else: ts = datetime2ts(RUN_TEST_TIME) for i in range(1, 8): ts = ts - 3600*24 results = r_cluster.hget('new_ip_'+str(ts), uid) if results: ip_dict = json.loads(results) for ip in ip_dict: ip_count = len(ip_dict[ip].split('&')) try: user_ip_result[ip] += ip_count except: user_ip_result[ip] = ip_count user_geo_dict = ip2geo(user_ip_result) user_geo_result = sorted(user_geo_dict.items(), key=lambda x:x[1], reverse=True) return user_geo_result
def search_group_sentiment_weibo(task_name, start_ts, sentiment): weibo_list = [] #step1:get task_name uid try: group_result = es_group_result.get(index=group_index_name, doc_type=group_index_type,\ id=task_name, _source=False, fields=['uid_list']) except: group_result = {} if group_result == {}: return 'task name invalid' try: uid_list = group_result['fields']['uid_list'] except: uid_list = [] if uid_list == []: return 'task uid list null' #step3: get ui2uname uid2uname = {} try: user_portrait_result = es_user_portrait.mget(index=portrait_index_name, doc_type=portrait_index_type,\ body={'ids':uid_list}, _source=False, fields=['uname'])['docs'] except: user_portrait_result = [] for item in user_portrait_result: uid = item['_id'] if item['found']==True: uname = item['fields']['uname'][0] uid2uname[uid] = uname #step4:iter date to search weibo weibo_list = [] iter_date = ts2datetime(start_ts) flow_text_index_name = flow_text_index_name_pre + str(iter_date) #step4: get query_body if sentiment != '2': query_body = [{'terms': {'uid': uid_list}}, {'term':{'sentiment': sentiment}}, \ {'range':{'timestamp':{'gte':start_ts, 'lt': start_ts+DAY}}}] else: query_body = [{'terms':{'uid':uid_list}}, {'terms':{'sentiment': SENTIMENT_SECOND}},\ {'range':{'timestamp':{'gte':start_ts, 'lt':start_ts+DAY}}}] try: flow_text_result = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body={'query':{'bool':{'must': query_body}}, 'sort': [{'timestamp':{'order':'asc'}}], 'size': MAX_VALUE})['hits']['hits'] except: flow_text_result = [] for flow_text_item in flow_text_result: source = flow_text_item['_source'] weibo = {} weibo['uid'] = source['uid'] weibo['uname'] = uid2uname[weibo['uid']] weibo['ip'] = source['ip'] try: weibo['geo'] = '\t'.join(source['geo'].split('&')) except: weibo['geo'] = '' weibo['text'] = source['text'] weibo['timestamp'] = source['timestamp'] weibo['sentiment'] = source['sentiment'] weibo_list.append(weibo) return weibo_list
def new_get_activeness_trend(uid, time_segment): results = {} try: activeness_history = ES_COPY_USER_PORTRAIT.get(index=COPY_USER_PORTRAIT_ACTIVENESS, doc_type=COPY_USER_PORTRAIT_ACTIVENESS_TYPE,\ id=uid)['_source'] except: activeness_history = {} if activeness_history: results = get_evaluate_trend(activeness_history, 'activeness') else: results = {} #deal results for situation---server power off new_time_list = [] new_count_list = [] new_results = {} now_time_ts = time.time() now_date_ts = datetime2ts(ts2datetime(now_time_ts)) for i in range(time_segment, 0, -1): iter_date_ts = now_date_ts - i * DAY try: date_count = results[iter_date_ts] except: date_count = 0 new_time_list.append(iter_date_ts) new_count_list.append(date_count) new_results = {'timeline': new_time_list, 'evaluate_index': new_count_list} return new_results
def get_user_weibo(uid): result = [] #use to test datestr = '2013-09-02' end_ts = datetime2ts(datestr) #real way to get datestr and ts_segment ''' now_ts = time.time() now_date = ts2datetime(now_ts) now_date_ts = datetime2ts(now_date) ts_segment = (int((now_ts - now_date_ts) / 3600)) % 24 end_ts = now_date_ts + ts_segment * 3600 ''' file_list = set(os.listdir(DEFAULT_LEVELDBPATH)) for i in range(24*7, 0, -1): ts = end_ts - i * 3600 datestr = ts2datetime(ts) ts_segment = (int((ts - datetime2ts(datestr)) / 3600)) % 24 + 1 leveldb_folder = datestr + str(ts_segment) if leveldb_folder in file_list: leveldb_bucket = dynamic_leveldb(leveldb_folder) try: user_weibo = leveldb_bucket.Get(uid) weibo_list = json.loads(user_weibo) result.extend(weibo_list) except: pass return result
def search_mention(now_ts, uid): date = ts2datetime(now_ts) ts = datetime2ts(date) #print 'at date-ts:', ts stat_results = dict() results = dict() for i in range(1,8): ts = ts - 24 * 3600 try: result_string = r_cluster.hget('at_' + str(ts), str(uid)) except: result_string = '' if not result_string: continue result_dict = json.loads(result_string) for at_uid in result_dict: try: stat_results[at_uid] += result_dict[at_uid] except: stat_results[at_uid] = result_dict[at_uid] for at_uid in stat_results: # search uid ''' uname = search_uid2uname(at_uid) if not uname: ''' uid = '' count = stat_results[at_uid] results[at_uid] = [uid, count] if results: sort_results = sorted(results.items(), key=lambda x:x[1][1], reverse=True) return [sort_results[:20], len(results)] else: return [None, 0]
def search_location(now_ts, uid): date = ts2datetime(now_ts) #print 'date:', date ts = datetime2ts(date) #print 'date-ts:', ts stat_results = dict() results = dict() for i in range(1, 8): ts = ts - 24 * 3600 #print 'for-ts:', ts result_string = r_cluster.hget('ip_' + str(ts), str(uid)) if not result_string: continue result_dict = json.loads(result_string) for ip in result_dict: try: stat_results[ip] += result_dict[ip] except: stat_results[ip] = result_dict[ip] for ip in stat_results: city = ip2city(ip) if city: try: results[city][ip] = stat_results[ip] except: results[city] = {ip: stat_results[ip]} description = active_geo_description(results) results['description'] = description #print 'location results:', results return results
def submit_attribute(attribute_name, attribute_value, submit_user, submit_date): print "-----------submit_user---------" print submit_user status = False id_attribute = '-'.join([submit_user,attribute_name]) print 'id_attribute:', id_attribute #maybe there have to identify the user admitted to submit attribute try: attribute_exist = es_tag.get(index=attribute_index_name, doc_type=attribute_index_type, id=id_attribute)['_source'] except: attribute_exist = {} #identify the tag name not same with the identify_attribute_list if attribute_exist == {} and id_attribute not in identify_attribute_list: input_data = dict() now_ts = time.time() date = ts2datetime(now_ts) input_data['attribute_name'] = attribute_name input_data['attribute_value'] = '&'.join(attribute_value.split(',')) input_data['user'] = submit_user input_data['date'] = submit_date es_tag.index(index=attribute_index_name, doc_type=attribute_index_type, id=id_attribute, body=input_data) status = True #put mappings to es_user_portrait submit_user_tag = str(submit_user) + "-tag" exist_field = es.indices.get_field_mapping(index=user_index_name, doc_type=user_index_type, field=submit_user_tag) if not exist_field: es.indices.put_mapping(index=user_index_name, doc_type=user_index_type, \ body={'properties':{submit_user_tag:{'type':'string', 'analyzer':'my_analyzer'}}}, ignore=400) return status
def get_influence_content(uid, timestamp_from, timestamp_to): weibo_list = [] #split timestamp range to new_range_dict_list from_date_ts = datetime2ts(ts2datetime(timestamp_from)) to_date_ts = datetime2ts(ts2datetime(timestamp_to)) new_range_dict_list = [] if from_date_ts != to_date_ts: iter_date_ts = from_date_ts while iter_date_ts < to_date_ts: iter_next_date_ts = iter_date_ts + DAY new_range_dict_list.append({'range':{'timestamp':{'gte':iter_date_ts, 'lt':iter_next_date_ts}}}) iter_date_ts = iter_next_date_ts if new_range_dict_list[0]['range']['timestamp']['gte'] < timestamp_from: new_range_dict_list[0]['range']['timestamp']['gte'] = timestamp_from if new_range_dict_list[-1]['range']['timestamp']['lt'] > timestamp_to: new_range_dict_list[-1]['range']['timestamp']['lt'] = timestamp_to else: new_range_dict_list = [{'range':{'timestamp':{'gte':timestamp_from, 'lt':timestamp_to}}}] #iter date to search flow_text iter_result = [] for range_item in new_range_dict_list: range_from_ts = range_item['range']['timestamp']['gte'] range_from_date = ts2datetime(range_from_ts) flow_text_index_name = flow_text_index_name_pre + range_from_date query = [] query.append({'term':{'uid':uid}}) query.append(range_item) try: flow_text_exist = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body={'query':{'bool':{'must': query}}, 'sort':[{'timestamp':'asc'}]})['hits']['hits'] except: flow_text_exist = [] iter_result.extend(flow_text_exist) # get weibo list for item in flow_text_exist: source = item['_source'] weibo = {} weibo['timestamp'] = ts2date(source['timestamp']) weibo['ip'] = source['ip'] weibo['text'] = source['text'] if source['geo']: weibo['geo'] = '\t'.join(source['geo'].split('&')) else: weibo['geo'] = '' weibo_list.append(weibo) return weibo_list
def search_sentiment_all_keywords_task(submit_date, keywords_string, submit_user, start_date, end_date, status): results = [] query_list = [] if submit_date: submit_ts_start = datetime2ts(submit_date) submit_ts_end = submit_ts_start + DAY query_list.append({'range': {'submit_ts': {'gte': submit_ts_start, 'lt':submit_ts_end}}}) if keywords_string: keywords_list = keywords_string.split(',') query_list.append({'terms':{'query_keywords': keywords_list}}) if submit_user: query_list.append({'term': {'submit_user': submit_user}}) if start_date: start_s_ts = datetime2ts(start_date) if end_date: start_e_ts = datetime2ts(end_date) else: start_e_ts = start_s_ts + DAY * 30 start_date_nest_body_list = [ts2datetime(ts) for ts in range(start_s_ts, start_e_ts + DAY, DAY)] query_list.append({'terms':{'start_date': start_date_nest_body_list}}) if end_date: end_e_ts = datetime2ts(end_date) if start_date: end_s_ts = datetime2ts(start_date) else: end_s_ts = end_e_ts - DAY * 30 end_date_nest_body_list = [ts2datetime(ts) for ts in range(end_s_ts, end_e_ts + DAY, DAY)] query_list.append({'terms': {'end_date': end_date_mest_body_list}}) if status: query_list.append({'term': {'status': status}}) try: task_results = es_sentiment_task.search(index=sentiment_keywords_index_name, \ doc_type=sentiment_keywords_index_type, body={'query':{'bool':{'must':query_list}}})['hits']['hits'] except: task_results = [] for task_item in task_results: task_source = task_item['_source'] task_id = task_source['task_id'] start_date = task_source['start_date'] end_date = task_source['end_date'] keywords = task_source['query_keywords'] submit_ts = ts2date(task_source['submit_ts']) status = task_source['status'] segment = task_source['segment'] results.append([task_id, start_date, end_date, keywords, submit_ts, status, segment]) return results
def get_user_detail(date, input_result, status): results = [] if status=='show_in': uid_list = input_result if status=='show_compute': uid_list = input_result.keys() if status=='show_in_history': uid_list = input_result.keys() if date!='all': index_name = 'bci_' + ''.join(date.split('-')) else: now_ts = time.time() now_date = ts2datetime(now_ts) index_name = 'bci_' + ''.join(now_date.split('-')) index_type = 'bci' user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs'] user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs'] max_evaluate_influ = get_evaluate_max(index_name) for i in range(0, len(uid_list)): uid = uid_list[i] bci_dict = user_bci_result[i] profile_dict = user_profile_result[i] try: bci_source = bci_dict['_source'] except: bci_source = None if bci_source: influence = bci_source['user_index'] influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10) influence = influence * 100 else: influence = '' try: profile_source = profile_dict['_source'] except: profile_source = None if profile_source: uname = profile_source['nick_name'] location = profile_source['user_location'] fansnum = profile_source['fansnum'] statusnum = profile_source['statusnum'] else: uname = '' location = '' fansnum = '' statusnum = '' if status == 'show_in': results.append([uid, uname, location, fansnum, statusnum, influence]) if status == 'show_compute': in_date = json.loads(input_result[uid])[0] compute_status = json.loads(input_result[uid])[1] if compute_status == '1': compute_status = '3' results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status]) if status == 'show_in_history': in_status = input_result[uid] results.append([uid, uname, location, fansnum, statusnum, influence, in_status]) return results
def get_db_num(timestamp): date = ts2datetime(timestamp) date_ts = datetime2ts(date) db_number = 2 - (((date_ts - begin_ts) / (DAY * 7))) % 2 #run_type if RUN_TYPE == 0: db_number = 1 return db_number
def search_retweet_network_keywords(task_id, uid): results = {} task_results = es_network_task.get(index=network_keywords_index_name, \ doc_type=network_keywords_index_type, id=task_id)['_source'] start_date = task_results['start_date'] start_ts = datetime2ts(start_date) end_date = task_resuts['end_date'] end_ts = datetime2ts(end_date) iter_date_ts = start_ts to_date_ts = end_ts iter_query_date_list = [] # ['2013-09-01', '2013-09-02'] while iter_date_ts <= to_date_ts: iter_date = ts2datetime(iter_date_ts) iter_query_date_list.append(iter_date) iter_date_ts += DAY #step2: get iter search flow_text_index_name #step2.1: get search keywords list query_must_list = [] keyword_nest_body_list = [] keywords_string = task_results['query_keywords'] keywords_list = keywords_string.split('&') for keywords_item in keywords_list: keyword_nest_body_list.append({'wildcard': {'text': '*' + keywords_item + '*'}}) query_must_list.append({'bool': {'should': keyword_nest_body_list}}) network_results = {} retweet_query = query_must_list be_retweet_query = query_must_list #retweet retweet_query.append({'term': {'uid': uid}}) item_results = {} for iter_date in iter_query_date_list: flow_text_index_name = flow_text_index_name_pre + iter_date query_body = { 'query':{ 'bool':{ 'must':retweet_query } }, 'size': 100 } flow_text_result = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body=query_body)['hits']['hits'] for item in flow_text_result: source = item['_source'] source_uid = source['directed_uid'] try: item_results[source_uid] += 1 except: item_results[source_uid] = 1 results = retweet_dict2results(uid, item_results) network_results['retweet'] = results #be_retweet retweet_query.append({'term': {'directed_uid': uid}}) item_results = {} for iter_date in iter_query_date_list: flow_text_index_name = flow_text_index_name_pre + iter_date query_body = { 'query':{ 'bool':{ 'must':retweet_query } }, 'size': 100 } flow_text_result = es_flow_text.search(index=flow_text_index_name, doc_type=flow_text_index_type,\ body=query_body)['hits']['hits'] for item in flow_text_result: source = item['_source'] source_uid = source['directed_uid'] try: item_results[source_uid] += 1 except: item_results[source_uid] = 1 results = retweet_dict2results(uid, item_results) network_results['be_retweet'] = results return network_results
def get_final_submit_user_info(uid_list): final_results = [] try: profile_results = es_user_profile.mget(index=profile_index_name, doc_type=profile_index_type, body={'ids': uid_list})['docs'] except: profile_results = [] try: bci_history_results = es_bci_history.mget( index=bci_history_index_name, doc_type=bci_history_index_type, body={'ids': uid_list})['docs'] except: bci_history_results = [] #get bci_history max value now_time_ts = time.time() search_date_ts = datetime2ts(ts2datetime(now_time_ts - DAY)) bci_key = 'bci_' + str(search_date_ts) query_body = { 'query': { 'match_all': {} }, 'sort': [{ bci_key: { 'order': 'desc' } }], 'size': 1 } #try: bci_max_result = es_bci_history.search(index=bci_history_index_name, doc_type=bci_history_index_type, body=query_body, _source=False, fields=[bci_key])['hits']['hits'] #except: # bci_max_result = {} if bci_max_result: bci_max_value = bci_max_result[0]['fields'][bci_key][0] else: bci_max_value = MAX_VALUE iter_count = 0 for uid in uid_list: try: profile_item = profile_results[iter_count] except: profile_item = {} try: bci_history_item = bci_history_results[iter_count] except: bci_history_item = {} if profile_item and profile_item['found'] == True: uname = profile_item['_source']['nick_name'] location = profile_item['_source']['user_location'] else: uname = '' location = '' if bci_history_item and bci_history_item['found'] == True: fansnum = bci_history_item['_source']['user_fansnum'] statusnum = bci_history_item['_source']['weibo_month_sum'] try: bci = bci_history_item['_source'][bci_key] normal_bci = math.log(bci / bci_max_value * 9 + 1, 10) * 100 except: normal_bci = '' else: fansnum = '' statusnum = '' normal_bci = '' final_results.append( [uid, uname, location, fansnum, statusnum, normal_bci]) iter_count += 1 return final_results
def get_task_detail_2(task_name, ts, user): results = dict() index_name = task_name _id = user + "-" + task_name task_detail = es.get(index=index_manage_sensing_task, doc_type=task_doc_type, id=_id)["_source"] task_name = task_detail['task_name'] social_sensors = json.loads(task_detail['social_sensors']) history_status = json.loads(task_detail['history_status']) start_time = task_detail['create_at'] create_by = task_detail['create_by'] stop_time = task_detail['stop_time'] remark = task_detail['remark'] portrait_detail = [] count = 0 # 计数 if social_sensors: search_results = es.mget(index=portrait_index_name, doc_type=portrait_index_type, body={"ids": social_sensors}, fields=SOCIAL_SENSOR_INFO)['docs'] for item in search_results: temp = [] if item['found']: for iter_item in SOCIAL_SENSOR_INFO: if iter_item == "topic_string": temp.append(item["fields"][iter_item][0].split('&')) else: temp.append(item["fields"][iter_item][0]) portrait_detail.append(temp) portrait_detail = sorted(portrait_detail, key=lambda x: x[5], reverse=True) time_series = [] # 时间 positive_sentiment_list = [] # 情绪列表 neutral_sentiment_list = [] negetive_sentiment_list = [] all_weibo_list = [] origin_weibo_list = [] # 微博列表 retweeted_weibo_list = [] retweeted_weibo_count = [] # 别人转发他的数量 comment_weibo_count = [] total_number_count = [] burst_time_list = [] # 爆发时间列表 important_user_set = set() # 重要人物列表 out_portrait_users = set() # 未入库 ts = int(ts) for item in history_status: if int(item[0]) <= ts: time_series.append(item[0]) # 到目前为止的所有的时间戳 # get detail task information from es if time_series: #print time_series flow_detail = es.mget(index=index_sensing_task, doc_type=_id, body={"ids": time_series})['docs'] else: flow_detail = {} if flow_detail: for item in flow_detail: item = item['_source'] timestamp = item['timestamp'] sentiment_distribution = json.loads(item["sentiment_distribution"]) positive_sentiment_list.append(int(sentiment_distribution['1'])) negetive_sentiment_list.append(int(sentiment_distribution['2'])+int(sentiment_distribution['3']) \ +int(sentiment_distribution['4'])+int(sentiment_distribution['5'])+int(sentiment_distribution['6'])) neutral_sentiment_list.append(int(sentiment_distribution['0'])) origin_weibo_list.append(item["origin_weibo_number"]) # real retweeted_weibo_list.append(item['retweeted_weibo_number']) # real all_weibo_list.append(item["origin_weibo_number"] + item['retweeted_weibo_number']) retweeted_weibo_count.append(item['retweeted_weibo_count']) comment_weibo_count.append(item['comment_weibo_count']) total_number_count.append(item['weibo_total_number']) temp_important_user_list = json.loads(item['important_users']) unfiltered_users = json.loads(item['unfilter_users']) temp_out_portrait_users = set(unfiltered_users) - set( temp_important_user_list) # 未入库 important_user_set = important_user_set | set( temp_important_user_list) out_portrait_users = out_portrait_users | set( temp_out_portrait_users) burst_reason = item.get("burst_reason", "") if burst_reason: burst_time_list.append([timestamp, count, burst_reason]) count += 1 #################################################################################### # 统计爆发原因,下相应的结论 weibo_variation_count = 0 weibo_variation_time = [] sentiment_variation_count = 0 sentiment_variation_time = [] common_variation_count = 0 common_variation_time = [] if burst_time_list: for item in burst_time_list: tmp_common = 0 x1 = 0 x2 = 0 if signal_count_varition in item[2]: weibo_variation_count += 1 weibo_variation_time.append( [ts2date_min(item[0]), total_number_count[item[1]]]) x1 = total_number_count[item[1]] tmp_common += 1 if signal_sentiment_varition in item[2]: tmp_common += 1 sentiment_variation_count += 1 x2 = negetive_sentiment_list[item[1]] sentiment_variation_time.append( [ts2date_min(item[0]), negetive_sentiment_list[item[1]]]) if tmp_common == 2: common_variation_count += 1 common_variation_time.append([ts2date_min(item[0]), x1, x2]) warning_conclusion = remark variation_distribution = [] if weibo_variation_count: variation_distribution.append(weibo_variation_time) else: variation_distribution.append([]) if sentiment_variation_count: variation_distribution.append(sentiment_variation_time) else: variation_distribution.append([]) if common_variation_count: variation_distribution.append(common_variation_time) else: variation_distribution.append([]) results['warning_conclusion'] = warning_conclusion results['variation_distribution'] = variation_distribution # 每个用户的热度 # 获取重要用户的个人信息 top_influence = get_top_influence("influence") top_activeness = get_top_influence("activeness") top_importance = get_top_influence("importance") important_uid_list = list(important_user_set) out_portrait_users_list = list(out_portrait_users) user_detail_info = [] # out_user_detail_info = [] if important_uid_list: user_results = es.mget(index=portrait_index_name, doc_type=portrait_index_type, body={"ids": important_uid_list}, fields=[ 'uid', 'uname', 'domain', 'topic_string', "photo_url", 'importance', 'influence', 'activeness' ])['docs'] for item in user_results: if item['found']: temp = [] #if int(item['fields']['importance'][0]) < IMPORTANT_USER_THRESHOULD: # continue temp.append(item['fields']['uid'][0]) temp.append(item['fields']['uname'][0]) temp.append(item['fields']['photo_url'][0]) temp.append(item['fields']['domain'][0]) temp.append(item['fields']['topic_string'][0].split('&')) #hot_count = count_hot_uid(item['fields']['uid'][0], start_time, stop_time) #temp.append(hot_count) temp.append( math.ceil(item['fields']['importance'][0] / float(top_importance) * 100)) temp.append( math.ceil(item['fields']['influence'][0] / float(top_influence) * 100)) temp.append( math.ceil(item['fields']['activeness'][0] / float(top_activeness) * 100)) user_detail_info.append(temp) # 排序 user_detail_info = sorted(user_detail_info, key=lambda x: x[6], reverse=True) if out_portrait_users_list: profile_results = es_profile.mget( index=profile_index_name, doc_type=profile_index_type, body={"ids": out_portrait_users_list})["docs"] bci_index = "bci_" + ts2datetime(ts - DAY).replace('-', '') influence_results = es.mget(index=bci_index, doc_type="bci", body={"ids": out_portrait_users_list})['docs'] top_influence = get_top_all_influence("influence", ts) count = 0 if profile_results: for item in profile_results: temp = [] if item['found']: temp.append(item['_source']['uid']) if item['_source']['nick_name']: temp.append(item['_source']['nick_name']) else: temp.append(item['_source']['uid']) temp.append(item['_source']['user_location']) temp.append(item['_source']['fansnum']) else: temp.append(item['_id']) temp.append(item['_id']) temp.extend(['', '']) temp_influ = influence_results[count] if temp_influ.get('found', 0): user_index = temp_influ['_source']['user_index'] temp.append( math.ceil(item['_source']['user_index'] / float(top_influence) * 100)) else: temp.append(0) count += 1 out_user_detail_info.append(temp) revise_time_series = [] for item in time_series: revise_time_series.append(ts2date_min(item)) results['important_user_detail'] = user_detail_info results['out_portrait_user_detail'] = out_user_detail_info results['burst_time'] = burst_time_list # 爆发时间点,以及爆发原因 results['time_series'] = revise_time_series results['positive_sentiment_list'] = positive_sentiment_list results['negetive_sentiment_list'] = negetive_sentiment_list results['neutral_sentiment_list'] = neutral_sentiment_list results['all_weibo_list'] = all_weibo_list results['origin_weibo_list'] = origin_weibo_list results['retweeted_weibo_list'] = retweeted_weibo_list results['comment_weibo_count'] = comment_weibo_count results['retweeted_weibo_count'] = retweeted_weibo_count results['total_number_list'] = total_number_count results['social_sensors_detail'] = portrait_detail return results