all_series, all_stations = ushcn_io.get_ushcn_data(params) if not hasattr(params, 'stations'): station_ids = sorted(random.sample(all_stations.keys(), params.nstns)) else: station_ids = sorted(params.stations) stations = dict(zip(station_ids, [all_stations[s] for s in station_ids])) series_list = [all_series[station] for station in station_ids] series = dict(zip([s.coop_id for s in series_list], series_list)) ## series_copy = copy.deepcopy(series) ## n = Network(stations, series, name=params.project) print n ########################################################################## print "Analyzing geographic network neighborhoods" all_neighbors = dict() stations_list = n.stations.values() for station in stations_list: print station.coop_id print "...computing neighbor distances" neighbors = find_neighborhood(station, stations_list, **params) all_neighbors[station.coop_id] = neighbors
all_series, all_stations = ushcn_io.get_ushcn_data(params) if not params.stations: station_ids = sorted(random.sample(all_stations.keys(), params.nstns)) else: station_ids = sorted(params.stations) stations = dict(zip(station_ids, [all_stations[s] for s in station_ids])) series_list = [all_series[station] for station in station_ids] series = dict(zip([s.coop_id for s in series_list], series_list)) ## series_copy = copy.deepcopy(series) ## n = Network(stations, series, name=params.project) print n ########################################################################## ## PRE PROCESS THE NETWORK preprocess(n, **params) ########################################################################## ## BEGIN SPLITMERGE EXPERIMENTS ##if os.path.exists("corr_out"): hom_params = dict(nstns=params.nstns, numsrt=params.numsrt, numcorr=params.numcorr, beg_year=params.begyr, end_year=params.endyr, data_src=params.data_src,