Exemple #1
0
    def count_alpha(self, context, aspect,  output, ctx_bitmap, alpha_adj=None):
        '''
        Count the attention weights. 
        alpha = softmax(tanh(wa*asp + wb*ctx))

        Args:
            :type context: tensor, shape = [batch_size, time_steps, edim]
            :param context: the input context. 

            :type aspect: tensor, shape = [batch_size, edim]
            :param aspect: the input aspect. 

            :type ctx_bitmap: tensorflow, shape like context. 
            :param ctx_bitmap: the context's bitmap, use to remove the influence of padding. \

        Returns:
            A tensor.  The attention weights of the context. 
        '''
        time_steps = tf.shape(context)[1]
        aspect_3dim = tf.reshape(
            tf.tile(aspect, [1, time_steps]),
            [-1, time_steps, self.edim]
        )
        output_3dim = tf.reshape(
            tf.tile(output, [1, time_steps]),
            [-1, time_steps, self.edim]
        )

        res_asp = self.line_layer_asp.forward(aspect_3dim)
        res_ctx = self.line_layer_ctx.forward(context)
        res_output = self.line_layer_output.forward(output_3dim)

        res_sum = res_asp + res_ctx + res_output
        res_act = activer(res_sum, self.active)

        batch_size = tf.shape(context)[0]
        w_shp0 = tf.shape(self.wline_ca)[0]
        w_shp1 = tf.shape(self.wline_ca)[1]
        w_line_3dim = tf.reshape(
            tf.tile(self.wline_ca, [batch_size, 1]),
            [batch_size, w_shp0, w_shp1]
        )
        res_act = tf.reshape(
            tf.matmul(res_act, w_line_3dim),
            [-1, time_steps]
        )

        alpha = normalizer(self.norm_type ,res_act, ctx_bitmap, 1)
        if alpha_adj is not None:
            alpha += alpha_adj
        return alpha
 def count_alpha(self, context, aspect, ctx_bitmap):
     '''
     count the content attention (weight)
     '''
     mem_size = tf.shape(context)[1]
     context = context
     aspect = aspect
     # adjust attention
     asp_3dim = tf.reshape(aspect, [-1, self.edim, 1])
     # gout = tf.matmul(context, asp_3dim)
     res_act = self.line_layer.forward(context)
     res_act = tf.reshape(
         tf.matmul(res_act, asp_3dim),
         [-1, mem_size]
     )
     # alpha = tf.nn.softmax(tf.reshape(gout, [-1, mem_size]))
     alpha = normalizer(self.norm_type, res_act, ctx_bitmap, 1)
     return alpha