import seaborn as sns import tikzplotlib from tqdm import tqdm, trange import torch.utils.data as data_utils parser = argparse.ArgumentParser() parser.add_argument('--randseed', type=int, default=123) args = parser.parse_args() train_loader = dl.CIFAR10(train=True, augm_flag=False) val_loader, test_loader = dl.CIFAR10(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_SVHN = dl.SVHN(train=False) test_loader_LSUN = dl.LSUN_CR(train=False) tab_ood = { 'CIFAR10 - CIFAR10': [], 'CIFAR10 - SVHN': [], 'CIFAR10 - LSUN': [], 'CIFAR10 - FarAway': [], 'CIFAR10 - Adversarial': [], 'CIFAR10 - FarAwayAdv': [] } tab_cal = {'DKL': ([], [])} delta = 2000
import numpy as np import argparse import pickle import os, sys import matplotlib.pyplot as plt import seaborn as sns import tikzplotlib from tqdm import tqdm, trange import torch.utils.data as data_utils from util.plotting import plot_histogram parser = argparse.ArgumentParser() parser.add_argument('--randseed', type=int, default=123) args = parser.parse_args() train_loader = dl.SVHN(train=True, augm_flag=False) val_loader, test_loader = dl.SVHN(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_CIFAR10 = dl.CIFAR10(train=False) test_loader_LSUN = dl.LSUN_CR(train=False) tab_ood = { 'SVHN - SVHN': [], 'SVHN - CIFAR10': [], 'SVHN - LSUN': [], 'SVHN - FarAway': [], 'SVHN - Adversarial': [], 'SVHN - FarAwayAdv': []