async def PUT_Chunk(request): log.request(request) app = request.app params = request.rel_url.query query = None if "query" in params: query = params["query"] log.info(f"PUT_Chunk query: {query}") chunk_id = request.match_info.get('id') if not chunk_id: msg = "Missing chunk id" log.error(msg) raise HTTPBadRequest(reason=msg) if not isValidUuid(chunk_id, "Chunk"): msg = f"Invalid chunk id: {chunk_id}" log.warn(msg) raise HTTPBadRequest(reason=msg) if not request.has_body: msg = "PUT Value with no body" log.warn(msg) raise HTTPBadRequest(reason=msg) if "bucket" in params: bucket = params["bucket"] log.debug(f"PUT_Chunk using bucket: {bucket}") else: bucket = None if query: expected_content_type = "text/plain; charset=utf-8" else: expected_content_type = "application/octet-stream" if "Content-Type" in request.headers: # client should use "application/octet-stream" for binary transfer content_type = request.headers["Content-Type"] if content_type != expected_content_type: msg = f"Unexpected content_type: {content_type}" log.error(msg) raise HTTPBadRequest(reason=msg) validateInPartition(app, chunk_id) if "dset" in params: msg = "Unexpected param dset in GET request" log.error(msg) raise HTTPBadRequest(reason=msg) log.debug(f"PUT_Chunk - id: {chunk_id}") dset_id = getDatasetId(chunk_id) dset_json = await get_metadata_obj(app, dset_id, bucket=bucket) log.debug(f"dset_json: {dset_json}") dims = getChunkLayout(dset_json) if "root" not in dset_json: msg = "expected root key in dset_json" log.error(msg) raise KeyError(msg) rank = len(dims) # get chunk selection from query params selection = [] for i in range(rank): dim_slice = getSliceQueryParam(request, i, dims[i]) selection.append(dim_slice) selection = tuple(selection) log.debug(f"got selection: {selection}") type_json = dset_json["type"] itemsize = 'H5T_VARIABLE' if "size" in type_json: itemsize = type_json["size"] dt = createDataType(type_json) log.debug(f"dtype: {dt}") if rank == 0: msg = "No dimension passed to PUT chunk request" log.error(msg) raise HTTPBadRequest(reason=msg) if len(selection) != rank: msg = "Selection rank does not match shape rank" log.error(msg) raise HTTPBadRequest(reason=msg) for i in range(rank): s = selection[i] log.debug(f"selection[{i}]: {s}") mshape = getSelectionShape(selection) log.debug(f"mshape: {mshape}") num_elements = 1 for extent in mshape: num_elements *= extent resp = {} query_update = None limit = 0 chunk_init = True input_arr = None if query: if not dt.fields: log.error("expected compound dtype for PUT query") raise HTTPInternalServerError() query_update = await request.json() log.debug(f"query_update: {query_update}") if "Limit" in params: limit = int(params["Limit"]) chunk_init = False else: # regular chunk update # check that the content_length is what we expect if itemsize != 'H5T_VARIABLE': log.debug(f"expect content_length: {num_elements*itemsize}") log.debug(f"actual content_length: {request.content_length}") if itemsize != 'H5T_VARIABLE' and (num_elements * itemsize) != request.content_length: msg = f"Expected content_length of: {num_elements*itemsize}, but got: {request.content_length}" log.error(msg) raise HTTPBadRequest(reason=msg) # create a numpy array for incoming data input_bytes = await request_read( request ) # TBD - will it cause problems when failures are raised before reading data? if len(input_bytes) != request.content_length: msg = f"Read {len(input_bytes)} bytes, expecting: {request.content_length}" log.error(msg) raise HTTPInternalServerError() input_arr = bytesToArray(input_bytes, dt, mshape) # TBD: Skip read if the input shape is the entire chunk? chunk_arr = await getChunk(app, chunk_id, dset_json, chunk_init=chunk_init, bucket=bucket) is_dirty = False if query: values = [] indices = [] if chunk_arr is not None: # do query selection limit = 0 if "Limit" in params: limit = int(params["Limit"]) field_names = list(dt.fields.keys()) replace_mask = [ None, ] * len(field_names) for i in range(len(field_names)): field_name = field_names[i] if field_name in query_update: replace_mask[i] = query_update[field_name] log.debug(f"replace_mask: {replace_mask}") x = chunk_arr[selection] log.debug(f"put_query - x: {x}") eval_str = getEvalStr(query, "x", field_names) log.debug(f"put_query - eval_str: {eval_str}") where_result = np.where(eval(eval_str)) log.debug(f"put_query - where_result: {where_result}") where_result_index = where_result[0] log.debug(f"put_query - whare_result index: {where_result_index}") log.debug( f"put_query - boolean selection: {x[where_result_index]}") s = selection[0] count = 0 for index in where_result_index: log.debug(f"put_query - index: {index}") value = x[index] log.debug(f"put_query - original value: {value}") for i in range(len(field_names)): if replace_mask[i] is not None: value[i] = replace_mask[i] log.debug(f"put_query - modified value: {value}") x[index] = value json_val = bytesArrayToList(value) log.debug(f"put_query - json_value: {json_val}") json_index = index.tolist( ) * s.step + s.start # adjust for selection indices.append(json_index) values.append(json_val) count += 1 is_dirty = True if limit > 0 and count >= limit: log.info("put_query - got limit items") break query_result = {} query_result["index"] = indices query_result["value"] = values log.info(f"query_result retiurning: {len(indices)} rows") log.debug(f"query_result: {query_result}") resp = json_response(query_result) else: # update chunk array chunk_arr[selection] = input_arr is_dirty = True resp = json_response({}, status=201) if is_dirty: chunk_cache = app["chunk_cache"] chunk_cache.setDirty(chunk_id) log.info(f"PUT_Chunk dirty cache count: {chunk_cache.dirtyCount}") # async write to S3 dirty_ids = app["dirty_ids"] now = int(time.time()) dirty_ids[chunk_id] = (now, bucket) # chunk update successful log.response(request, resp=resp) return resp
async def PUT_Chunk(request): log.request(request) app = request.app params = request.rel_url.query chunk_id = request.match_info.get('id') if not chunk_id: msg = "Missing chunk id" log.error(msg) raise HTTPBadRequest(reason=msg) if not isValidUuid(chunk_id, "Chunk"): msg = "Invalid chunk id: {}".format(chunk_id) log.warn(msg) raise HTTPBadRequest(reason=msg) if not request.has_body: msg = "PUT Value with no body" log.warn(msg) raise HTTPBadRequest(reason=msg) content_type = "application/octet-stream" if "Content-Type" in request.headers: # client should use "application/octet-stream" for binary transfer content_type = request.headers["Content-Type"] if content_type != "application/octet-stream": msg = "Unexpected content_type: {}".format(content_type) log.error(msg) raise HTTPBadRequest(reason=msg) validateInPartition(app, chunk_id) log.debug("request params: {}".format(list(params.keys()))) if "dset" not in params: msg = "Missing dset in GET request" log.error(msg) raise HTTPBadRequest(reason=msg) dset_json = json.loads(params["dset"]) log.debug("dset_json: {}".format(dset_json)) dims = getChunkLayout(dset_json) if "root" not in dset_json: msg = "expected root key in dset_json" log.error(msg) raise KeyError(msg) rank = len(dims) # get chunk selection from query params selection = [] for i in range(rank): dim_slice = getSliceQueryParam(request, i, dims[i]) selection.append(dim_slice) selection = tuple(selection) log.debug("got selection: {}".format(selection)) type_json = dset_json["type"] itemsize = 'H5T_VARIABLE' if "size" in type_json: itemsize = type_json["size"] dt = createDataType(type_json) log.debug("dtype: {}".format(dt)) if rank == 0: msg = "No dimension passed to PUT chunk request" log.error(msg) raise HTTPBadRequest(reason=msg) if len(selection) != rank: msg = "Selection rank does not match shape rank" log.error(msg) raise HTTPBadRequest(reason=msg) for i in range(rank): s = selection[i] log.debug("selection[{}]: {}".format(i, s)) mshape = getSelectionShape(selection) log.debug(f"mshape: {mshape}") num_elements = 1 for extent in mshape: num_elements *= extent # check that the content_length is what we expect if itemsize != 'H5T_VARIABLE': log.debug("expect content_length: {}".format(num_elements*itemsize)) log.debug("actual content_length: {}".format(request.content_length)) if itemsize != 'H5T_VARIABLE' and (num_elements * itemsize) != request.content_length: msg = "Expected content_length of: {}, but got: {}".format(num_elements*itemsize, request.content_length) log.error(msg) raise HTTPBadRequest(reason=msg) # create a numpy array for incoming data input_bytes = await request_read(request) # TBD - will it cause problems when failures are raised before reading data? if len(input_bytes) != request.content_length: msg = "Read {} bytes, expecting: {}".format(len(input_bytes), request.content_length) log.error(msg) raise HTTPInternalServerError() input_arr = bytesToArray(input_bytes, dt, mshape) chunk_arr = await getChunk(app, chunk_id, dset_json, chunk_init=True) # update chunk array chunk_arr[selection] = input_arr chunk_cache = app["chunk_cache"] chunk_cache.setDirty(chunk_id) log.info(f"PUT_Chunk dirty cache count: {chunk_cache.dirtyCount}") # async write to S3 dirty_ids = app["dirty_ids"] now = int(time.time()) dirty_ids[chunk_id] = now # chunk update successful resp = json_response({}, status=201) log.response(request, resp=resp) return resp
async def PUT_Chunk(request): log.request(request) app = request.app params = request.rel_url.query query = None query_update = None limit = 0 bucket = None input_arr = None if "query" in params: query = params["query"] log.info(f"PUT_Chunk query: {query}") if "Limit" in params: limit = int(params["Limit"]) chunk_id = request.match_info.get('id') if not chunk_id: msg = "Missing chunk id" log.error(msg) raise HTTPBadRequest(reason=msg) if not isValidUuid(chunk_id, "Chunk"): msg = f"Invalid chunk id: {chunk_id}" log.warn(msg) raise HTTPBadRequest(reason=msg) if not request.has_body: msg = "PUT Value with no body" log.warn(msg) raise HTTPBadRequest(reason=msg) if "bucket" in params: bucket = params["bucket"] log.debug(f"PUT_Chunk using bucket: {bucket}") else: bucket = None if query: expected_content_type = "text/plain; charset=utf-8" chunk_init = False # don't initalize new chunks on query update else: expected_content_type = "application/octet-stream" chunk_init = True if "Content-Type" in request.headers: # client should use "application/octet-stream" for binary transfer content_type = request.headers["Content-Type"] if content_type != expected_content_type: msg = f"Unexpected content_type: {content_type}" log.error(msg) raise HTTPBadRequest(reason=msg) validateInPartition(app, chunk_id) if "dset" in params: msg = "Unexpected param dset in GET request" log.error(msg) raise HTTPBadRequest(reason=msg) log.debug(f"PUT_Chunk - id: {chunk_id}") dset_id = getDatasetId(chunk_id) dset_json = await get_metadata_obj(app, dset_id, bucket=bucket) log.debug(f"dset_json: {dset_json}") # TBD - does this work with linked datasets? dims = getChunkLayout(dset_json) log.debug(f"got dims: {dims}") rank = len(dims) type_json = dset_json["type"] dt = createDataType(type_json) log.debug(f"dtype: {dt}") itemsize = 'H5T_VARIABLE' if "size" in type_json: itemsize = type_json["size"] # get chunk selection from query params selection = [] for i in range(rank): dim_slice = getSliceQueryParam(request, i, dims[i]) selection.append(dim_slice) selection = tuple(selection) log.debug(f"got selection: {selection}") mshape = getSelectionShape(selection) log.debug(f"mshape: {mshape}") num_elements = 1 for extent in mshape: num_elements *= extent chunk_arr = await get_chunk(app, chunk_id, dset_json, bucket=bucket, chunk_init=chunk_init) is_dirty = False if chunk_arr is None: if chunk_init: log.error(f"failed to create numpy array") raise HTTPInternalServerError() else: log.warn(f"chunk {chunk_id} not found") raise HTTPNotFound() if query: if not dt.fields: log.error("expected compound dtype for PUT query") raise HTTPInternalServerError() if rank != 1: log.error("expected one-dimensional array for PUT query") raise HTTPInternalServerError() query_update = await request.json() log.debug(f"query_update: {query_update}") # TBD - send back binary response to SN node try: resp = chunkQuery(chunk_id=chunk_id, chunk_layout=dims, chunk_arr=chunk_arr, slices=selection, query=query, query_update=query_update, limit=limit, return_json=True) except TypeError as te: log.warn(f"chunkQuery - TypeError: {te}") raise HTTPBadRequest() except ValueError as ve: log.warn(f"chunkQuery - ValueError: {ve}") raise HTTPBadRequest() if query_update and resp is not None: is_dirty = True else: # regular chunk update # check that the content_length is what we expect if itemsize != 'H5T_VARIABLE': log.debug(f"expect content_length: {num_elements*itemsize}") log.debug(f"actual content_length: {request.content_length}") if itemsize != 'H5T_VARIABLE' and (num_elements * itemsize) != request.content_length: msg = f"Expected content_length of: {num_elements*itemsize}, but got: {request.content_length}" log.error(msg) raise HTTPBadRequest(reason=msg) # create a numpy array for incoming data input_bytes = await request_read(request) # TBD - will it cause problems when failures are raised before reading data? if len(input_bytes) != request.content_length: msg = f"Read {len(input_bytes)} bytes, expecting: {request.content_length}" log.error(msg) raise HTTPInternalServerError() input_arr = bytesToArray(input_bytes, dt, mshape) chunkWriteSelection(chunk_arr=chunk_arr, slices=selection, data=input_arr) is_dirty = True # chunk update successful resp = {} if is_dirty: save_chunk(app, chunk_id, bucket=bucket) resp = json_response(resp, status=201) log.response(request, resp=resp) return resp