def __init__(self, emotiv):
        self.isRunning = False
        self.isRecording = False

        self.sensors = np.array(['F3','P7','O1','O2','P8','F4'])
        self.headset = emotiv
        self.dataQueue = Queue()

        self.host = 'localhost'
        self.port = 8888
        self.commandClient = client.connect(self.host, self.port)
        self.commands = [6.4, 8, 6.9]

        # processing parameters
        self.freqs = [6.4, 6.9, 8]
        self.winSize = 6
        self.method = featex.MSI(list(self.freqs), (self.winSize - 1) * config.FS, config.FS)
def compare_methods(dataFile):
    # read data
    data = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    X = data['X'].astype('float32', copy=False)

    # select channels and best CCAchannels for PSDA
    CARchannels = np.array(['F3', 'P7', 'O1', 'O2', 'P8', 'F4'])
    # X = X[:, np.in1d(np.array(config.SENSORS), CARchannels)]

    # Filtro passaalto
    Wcritic = np.array([0., 4., 5., 64.])
    b, a = preprocessing._get_fir_filter(Wcritic, config.FS, mask=[0, 1])
    X = signal.filtfilt(b, (a, ), X, axis=0)
    # X = signal.fftconvolve(X, b[:, np.newaxis], mode='valid')

    # CAR FILTER
    X -= X.mean(axis=0)
    X = np.dot(X, preprocessing.CAR(X.shape[1]))

    accuracies = []
    [accuracies.append([]) for i in xrange(3)]
    undefineds = []
    [undefineds.append([]) for i in xrange(3)]
    tries = range(3, 9)

    myChannels = np.array(['O1', 'O2'])
    X = X[:, np.in1d(CARchannels, myChannels)].reshape(len(X), len(myChannels))

    # Comparison parameters
    # criterion == 'offline' -> classifier just a criterion of maxima. Windows->Output 1:1
    # criterion == 'pseudoon' -> classifier with a confidence criterion. Windows->Output 1:(0|1)
    criterion = 'pseudoon'
    # segment == 'sliding' -> sliding windows with slide = 1 s
    # segment == 'nooverlap' -> windows with no overlap. Only the first and, if present, the second, are considered
    segmenting = 'sliding'

    for i in tries:
        print 'Window %d' % i
        if criterion == 'offline':
            actualWindow = i
        elif criterion == 'pseudoon':
            actualWindow = i - 1

        method = featex.CCA(list(FREQUENCIES), actualWindow * config.FS,
                            config.FS)
        acc, avg_time = apply_method(X, i, segmenting, criterion, method)
        accuracies[0].append(acc)
        # undefineds[0].append(i + und / (1 - und))

        method = featex.MSI(list(FREQUENCIES), actualWindow * config.FS,
                            config.FS)
        acc, avg_time = apply_method(X, i, segmenting, criterion, method)
        accuracies[1].append(acc)
        # undefineds[1].append(i + und / (1 - und))

        method = featex.PSDA(list(FREQUENCIES), actualWindow * config.FS,
                             config.FS)
        acc, avg_time = apply_method(X, i, segmenting, criterion, method)
        accuracies[2].append(acc)
        # undefineds[2].append(i + und / (1 - und))

    fig = plt.figure(1)
    fig.suptitle(dataFile + ' ' +
                 ":".join(CARchannels[np.in1d(CARchannels, myChannels)]))
    plt.subplot(121)
    # plt.ylim((33., 100.))
    plt.xlabel("Window length")
    plt.ylabel("Accuracy")
    plt.plot(tries, accuracies[0], '-or', label='CCA')
    plt.plot(tries, accuracies[1], '-oy', label='MSI')
    plt.plot(tries, accuracies[2], '-og', label='PSDA')
    plt.legend()
    plt.grid()
    plt.subplot(122)
    plt.xlabel("Window length")
    plt.ylabel("Time for command")
    plt.plot(tries, undefineds[0], 'r', label='CCA')
    plt.plot(tries, undefineds[1], 'y', label='MSI')
    plt.plot(tries, undefineds[2], 'g', label='PSDA')
    plt.legend()
    plt.grid()
    plt.show()
Exemple #3
0
    X = signal.lfilter(b, (a, ), X, axis=0)

    channel = [11]  # Oz

    t = np.arange(nx - 1 + 0.) / 600.
    x = np.empty((2 * modelorder, t.shape[0]))
    for i in range(len(freqs)):
        x[i * 4:(i + 1) * 4, :] = featex.generate_references(
            t.shape[0], freqs[i], Fs, 2).T

    title = "LMS  chirp  filterlen %d  nx %d  noise %.2g  mu %.2g " % (
        modelorder, nx, noise, damp)
    print title

    #...............................................................................
    msi = featex.MSI(freqs, nx - 1, Fs)
    mflc = MultiFLC(np.zeros(2 * modelorder), mu=damp)
    flc = featex.FLC(freqs, nx - 1, Fs)

    ws = [list() for i in range(len(freqs))]
    flcs = [list() for i in range(len(freqs))]
    msis = [list() for i in range(len(freqs))]
    msiws = [list() for i in range(len(freqs))]
    errs = []
    stds = []
    for i in range(0, 100):
        y1 = X[i * Fs:i * Fs + nx,
               channel].reshape(nx,
                                len(channel))  # protocol first part, 20s x 2

        # f,psd = preprocessing.get_psd(y1[:,0], 3, Fs, config.NFFT)
def filter_classify(dataFile):
    # read data
    data = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    EEG = data['data']

    Fs = 600
    freqs = [5.6, 6.4, 6.9, 8]
    # freqs = [8]

    # CAR FILTER & PASSBAND FILTER
    Wcritic = np.array([0., 4., 5., 49., 50., 300.])
    b, a = preprocessing._get_fir_filter(Wcritic, Fs, 851)
    EEG = signal.fftconvolve(EEG, b[:, np.newaxis], mode='valid')

    EEG -= EEG.mean(axis=0)
    EEG = np.dot(EEG, preprocessing.CAR(EEG.shape[1]))

    # Filter parameters
    damp = .005
    nx = 600 * 2
    modelorder = 2
    harmonics = 2
    singleFilter = 0

    channel = [9, 10, 11]
    EEG = EEG[0:110 * Fs,
              channel].reshape(110 * Fs,
                               len(channel))  # First part of protocol
    protocolPart1 = preprocessing.sliding_window(EEG, (nx, EEG.shape[1]),
                                                 (Fs, EEG.shape[1]))

    msi = featex.MSI(freqs, nx, Fs)
    # psda = processing.PSDA(freqs, nx, Fs)

    anfs = [adapt_filtering.ANF(harmonics * modelorder, damp) for f in freqs]
    anf = adapt_filtering.ANF(harmonics * modelorder, damp)

    befores = np.zeros((len(protocolPart1), len(freqs)))
    afters = np.zeros((len(protocolPart1), len(freqs)))
    for ii, win in enumerate(protocolPart1):
        ys = []

        #### ONE FILTER
        if singleFilter:
            x = np.zeros((nx, harmonics * modelorder))
            for i in range(len(freqs)):
                x[:, i * 4:(i + 1) * 4] = featex.generate_references(
                    nx, freqs[i], Fs, 2)

            y = np.zeros((nx, len(channel)))
            for c in range(len(channel)):
                y[:, c], _ = anf.filter_synch(x, win[:, c])

            # fig, ax = pl.subplots( nrows=2 )
            # fb, PSDb = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT, ax[0])
            # fa, PSDa = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT, ax[1])
            # pl.show()

            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)
                # Compute MSI / PSDA indicators
                befores[ii, i] = msi._compute_MSI(x, win)
                # f, PSD = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT)
                # befores[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
                afters[ii, i] = msi._compute_MSI(x, y)
                # f, PSD = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT)
                # afters[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
            np.round(befores, 3)
            np.round(afters, 3)
        else:
            #####################
            #### MULTIPLE FILTERS
            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)

                # Compute MSI / PSDA indicators
                befores[ii, i] = msi._compute_MSI(x, win)
                # f, PSD = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT)
                # befores[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)

                # Filter
                y = np.zeros((nx, len(channel)))
                for c in range(len(channel)):
                    y[:, c], _ = anfs[i].filter_synch(x, win[:, c])
                ys.append(y)

            y = np.sum(ys, axis=0)
            # fig, ax = pl.subplots( nrows=2 )
            # fb, PSDb = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT, ax[0])
            # fa, PSDa = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT, ax[1])
            # pl.show()

            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)
                # Compute MSI / PSDA indicators
                afters[ii, i] = msi._compute_MSI(x, y)
                # f, PSD = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT)
                # afters[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
            np.round(befores, 3)
            np.round(afters, 3)
            ################

    c = 0
    for i in range(len(befores)):
        if stdtest(befores[i]):  # 70%
            print np.argmax(befores[i])
            c += 1
    print 'count: %d' % c

    fig, ax = pl.subplots(nrows=2)
    fig.set_size_inches(12, 8)
    plots = ax[0].plot(befores)
    ax[0].legend(plots, map(str, freqs), loc=1)
    start, end = ax[0].get_xlim()
    ax[0].xaxis.set_ticks(np.arange(start, end, 5))
    ax[0].grid()
    plots = ax[1].plot(afters)
    ax[1].legend(plots, map(str, freqs), loc=1)
    ax[1].xaxis.set_ticks(np.arange(start, end, 5))
    ax[1].grid()
    pl.show()
def filter_and_accuracy(dataFile, signalChannel, noiseChannel):
    # read data
    data = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    data = data['data']

    # CAR FILTER & PASSBAND FILTER
    data -= data.mean(axis=0)
    # X = np.dot(X, preprocessing.CAR(X.shape[1]))
    b, a = preprocessing._get_fir_filter(config.WCRITIC, Fs, 251)
    data = signal.lfilter(b, (a,), data, axis=0)

    s1 = data[0:160*Fs, np.in1d(SANDRA_SENSORS, signalChannel)]# - X[0:160*Fs, channelN:channelN+1] # protocol first part, 20s x 2
    n1 = data[0:160*Fs, np.in1d(SANDRA_SENSORS, noiseChannel)]

    l1 = offline.make_label_matrix(s1.shape[0], period=20, window=WINLENGTH, fs=Fs, classes=4)

    signalWindows = preprocessing.sliding_window(s1, (nx, s1.shape[1]), (Fs, s1.shape[1]))
    noiseWindows = preprocessing.sliding_window(n1, (nx, s1.shape[1]), (Fs, s1.shape[1]))

    # classifier = processing.PSDA(freqs, nx - fOrder, Fs)
    classifier = featex.MSI(freqs, nx - fOrder, Fs)

    outBipolar = np.zeros(signalWindows.shape[0])
    outFiltered = np.zeros(signalWindows.shape[0])
    SNRsignal =  np.zeros(signalWindows.shape[0])
    SNRnoise =  np.zeros(signalWindows.shape[0])
    for ii, (signalWin, noiseWin) in enumerate(zip(signalWindows, noiseWindows)):
        ys = []
        epss = []

        bipolar = signalWin[0:nx - fOrder] - noiseWin[0:nx - fOrder]

        Fxx, Pxx = preprocessing.get_psd(signalWin[:,0], WINLENGTH, Fs, config.NFFT)
        Fyy, Pyy = preprocessing.get_psd(noiseWin[:,0], WINLENGTH, Fs, config.NFFT)
        if plot == 1:
            pl.plot(Fyy[Fyy < 50],Pyy[Fyy < 50])
            pl.axvline(x = freqs[l1[ii]], linewidth=2, color='r')
            pl.axvline(x = freqs[l1[ii]] * 2,linewidth=2, color='r')
            pl.axvspan(freqs[l1[ii]] - 3, freqs[l1[ii]] + 3, facecolor='r', alpha=.3)
            pl.axvspan(freqs[l1[ii]] * 2 - 3, freqs[l1[ii]] * 2 + 3, facecolor='r', alpha=.3)
            pl.show()

        SNRsignal[ii] = featex.PSDA.compute_SNR(Fxx, Pxx, freqs[l1[ii]], Fs)
        SNRnoise[ii] = featex.PSDA.compute_SNR(Fyy, Pyy, freqs[l1[ii]], Fs)
        
        lms = LMS( np.zeros(fOrder), mu=damp )
        for t in xrange( nx - fOrder):
            XX = noiseWin[t:t+fOrder, :]
            y = signalWin[t+fOrder, 0]  # predict
            eps = lms.est( XX, y)
            ys += [y]
            epss += [eps]
            
        y = np.array(ys)
        sCap = np.array(epss)
        
        err = (epss - y)**2
        averr = "av %.2g += %.2g" % (err.mean(), err.std())
        # print "LMS MSE:", averr
        # print "LMS weights:", lms.W

        outBipolar[ii] = freqs.index(classifier.perform(bipolar))
        outFiltered[ii] = freqs.index(classifier.perform(np.atleast_2d(sCap).T))
        # print outMonopolar[ii], outFiltered[ii], l1[ii]
        if plot == 2:
            fig, ax = pl.subplots( nrows=5 )
            fig.set_size_inches( 12, 8 )
            ax[0].plot( y, color="orangered", label="y" )
            ax[0].plot( epss, label="yest" )
            ax[0].legend()
            ax[1].plot( err, label=averr )
            ax[1].legend()
            f,psd = preprocessing.get_psd(signalWin[:,0], 3, Fs, config.NFFT, ax[2])
            ax[2].legend()

            f,psd = preprocessing.get_psd(noiseWin[:,0], 3, Fs, config.NFFT, ax[3])
            ax[3].legend()
            ax[3].axvline(x = freqs[l1[ii]], linewidth=2, color='r')
            ax[3].axvline(x = freqs[l1[ii]] * 2,linewidth=2, color='r')
            ax[3].axvspan(freqs[l1[ii]] - 3, freqs[l1[ii]] + 3, facecolor='r', alpha=.3)
            ax[3].axvspan(freqs[l1[ii]] * 2 - 3, freqs[l1[ii]] * 2 + 3, facecolor='r', alpha=.3)
            f,psd = preprocessing.get_psd(epss, 3, Fs, config.NFFT, ax[4])
            ax[4].legend()
            ax[4].axvline(x = freqs[l1[ii]], linewidth=2, color='r')
            ax[4].axvline(x = freqs[l1[ii]] * 2,linewidth=2, color='r')
            ax[4].axvspan(freqs[l1[ii]] - 3, freqs[l1[ii]] + 3, facecolor='r', alpha=.3)
            ax[4].axvspan(freqs[l1[ii]] * 2 - 3, freqs[l1[ii]] * 2 + 3, facecolor='r', alpha=.3)

            pl.show()

    # print "LMS  noise cancellation  filterlen %d  nx %d  noise %s  mu %.2g " % (
        # fOrder, nx, noiseChannel, damp )
    # print 'SNR signal: %f, SNR noise: %f, distorsion: %f, output SNR : %f' % (
        # SNRsignal.mean(), SNRnoise.mean(), SNRnoise.mean() / SNRsignal.mean(), np.mean(1 / SNRnoise))
    # print performance.get_accuracy(l1, outBipolar), performance.get_accuracy(l1, outFiltered)
    return performance.get_accuracy(l1, outBipolar), performance.get_accuracy(l1, outFiltered), SNRnoise.mean() / SNRsignal.mean()
Exemple #6
0
def filter_classify(dataFile):
    # read data
    data = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    EEG = data['X'].astype('float32', copy=False)

    # CARchannels = np.array(['P7','O1','O2','P8'])
    CARchannels = np.array(['F3', 'P7', 'O1', 'O2', 'P8', 'F4'])
    # EEG = EEG[:, np.in1d(np.array(config.SENSORS), CARchannels)]

    Fs = config.FS
    freqs = [6.4, 6.9, 8]

    # HIGHPASS FILTER
    Wcritic = np.array([0., 4., 5., 64.])
    b, a = preprocessing._get_fir_filter(Wcritic, config.FS, mask=[0, 1])
    EEG = signal.filtfilt(b, (a, ), EEG, axis=0)

    # CAR FILTER
    EEG -= EEG.mean(axis=0)
    EEG = np.dot(EEG, preprocessing.CAR(EEG.shape[1]))

    # Filter parameters
    damp = .005
    window = 4
    nx = Fs * window
    modelorder = 2
    harmonics = 2
    singleFilter = 0

    CCAchannels = np.array(['O1', 'O2'])
    EEG = EEG[:, np.in1d(CARchannels, CCAchannels)].reshape(
        len(EEG), len(CCAchannels))
    msi = featex.MSI(list(freqs), nx, Fs)
    psda = featex.PSDA(freqs, nx, Fs)

    anfs = [adapt_filtering.ANF(harmonics * modelorder, damp) for f in freqs]
    anf = adapt_filtering.ANF(harmonics * modelorder, damp)

    # windowsInPeriod = window*2 <= config.RECORDING_PERIOD and 2 or 1
    windowsInPeriod = config.RECORDING_PERIOD - window + 1
    befores = np.empty(
        (config.RECORDING_ITERATIONS * len(freqs) * windowsInPeriod,
         len(freqs)))
    afters = np.empty(
        (config.RECORDING_ITERATIONS * len(freqs) * windowsInPeriod,
         len(freqs)))
    protocolFiltered = np.empty(
        (config.RECORDING_ITERATIONS * len(freqs) * windowsInPeriod, nx,
         len(CCAchannels)))

    # label = offline.make_label_segments(config.RECORDING_ITERATIONS, config.RECORDING_PERIOD, window, len(freqs))
    # W = offline.extract_segment_start(EEG, window, config.RECORDING_ITERATIONS, config.RECORDING_PERIOD, Fs)
    label = offline.make_label_windows(config.RECORDING_ITERATIONS,
                                       config.RECORDING_PERIOD, window,
                                       len(freqs))
    W = offline.extract_windowed_segment(EEG, window, config.RECORDING_PERIOD,
                                         Fs)

    for wi, win in enumerate(W):
        ys = []

        #### ONE FILTER
        if singleFilter:
            x = np.zeros((nx, harmonics * modelorder))
            for i in range(len(freqs)):
                x[:, i * 4:(i + 1) * 4] = featex.generate_references(
                    nx, freqs[i], Fs, 2)

            y = np.zeros((nx, len(CCAchannels)))
            for c in range(len(CCAchannels)):
                y[:, c], _ = anf.filter_synch(x, win[:, c])

            protocolFiltered[wi] = y
            # fig, ax = pl.subplots( nrows=2 )
            # fb, PSDb = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT, ax[0])
            # fa, PSDa = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT, ax[1])

            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)
                # Compute MSI / PSDA indicators
                befores[wi, i] = msi._compute_MSI(x, win)
                # f, PSD = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT)
                # befores[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
                afters[wi, i] = msi._compute_MSI(x, y)
                # f, PSD = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT)
                # afters[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
            np.round(befores, 3)
            np.round(afters, 3)
            # print afters[ii, :], befores[ii, :]
            # pl.show()
        else:
            #####################
            #### MULTIPLE FILTERS
            temp = []

            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)

                # Compute MSI / PSDA indicators
                befores[wi, i] = msi._compute_MSI(x, win)
                # befores[ii, i] = msi._compute_max_corr(x, win)
                # f, PSD = preprocessing.get_psd(win[:,1], nx / Fs, Fs, config.NFFT)
                # befores[wi, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)

                # Filter
                y = np.zeros((nx, len(CCAchannels)))
                for c in range(len(CCAchannels)):
                    y[:, c], _ = anfs[i].filter_synch(x, win[:, c])
                ys.append(y)

            #     ics1 = processing.generate_references(nx, freqs[0], Fs, harmonics)
            #     ics2 = processing.generate_references(nx, freqs[1], Fs, harmonics)
            #     m1 = msi._compute_max_corr(ics1, y)
            #     m2 = msi._compute_max_corr(ics2, y)
            #     if freq == freqs[0]:
            #         temp.append(m1)
            #     else:
            #         temp.append(m2)

            # print befores[ii, :]
            # print temp
            y = np.sum(ys, axis=0)
            protocolFiltered[wi] = y
            # fig, ax = pl.subplots( nrows=2 )
            # fb, PSDb = preprocessing.get_psd(win[:,1], nx / Fs, Fs, config.NFFT, ax[0])
            # fa, PSDa = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT, ax[1])
            # pl.show()

            for i, freq in enumerate(freqs):
                x = featex.generate_references(nx, freq, Fs, harmonics)
                # Compute MSI / PSDA indicators
                afters[wi, i] = msi._compute_MSI(x, y)
                # f, PSD = preprocessing.get_psd(y[:,1], nx / Fs, Fs, config.NFFT)
                # afters[wi, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
            np.round(befores, 3)
            np.round(afters, 3)
            ################

    o1 = offline.offline_classify(W, freqs, msi)
    cm = performance.get_confusion_matrix(label, o1, len(freqs))
    print performance.get_accuracy(cm)

    for i in range(len(befores)):
        if stdtest(befores[i]):  # 70%
            print i, qtest(befores[i])

    fig, ax = pl.subplots(nrows=2)
    fig.suptitle(dataFile)
    fig.set_size_inches(12, 8)
    plots = ax[0].plot(befores, '-o')
    ax[0].plot(label * np.max(befores))
    ax[0].legend(plots, [str(f) for f in freqs], loc=1)
    start, end = ax[0].get_xlim()
    ax[0].xaxis.set_ticks(np.arange(start, end, 1))
    ax[0].grid()
    plots = ax[1].plot(afters, '-o')
    # ax[1].plot(label * np.max(afters))
    ax[1].legend(plots, [str(f) for f in freqs], loc=1)
    ax[1].xaxis.set_ticks(np.arange(start, end, 1))
    ax[1].grid()
    pl.show()
Exemple #7
0
def filter_classify(dataFile):
    # read data
    data = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    EEG = data['X'].astype('float32', copy=False)

    channels = np.array(['F3', 'P7', 'O1', 'O2', 'P8', 'F4'])
    EEG = EEG[:, np.in1d(np.array(config.SENSORS), channels)]

    # CAR FILTER
    EEG -= EEG.mean(axis=0)
    EEG = np.dot(EEG, preprocessing.CAR(EEG.shape[1]))

    Fs = config.FS
    freqs = [6.4, 6.9, 8]

    # HIGHPASS FILTER
    # Per Emotiv DEVE ESSERE DI ORDINE BASSO PER DARE UN POCHINO DI RITARDO
    Wcritic = np.array([0., 4., 5., 64.])
    b, a = preprocessing._get_fir_filter(Wcritic, config.FS, mask=[0, 1])
    EEG = signal.filtfilt(b, (a, ), EEG, axis=0)

    # Filter parameters
    damp = .001
    window = 6
    nx = Fs * window
    modelorder = 50
    harmonics = 2

    channelSignal = np.in1d(channels, ['O2'])
    channelNoise = np.in1d(channels, ['P7'])
    s1 = EEG[:, channelSignal].reshape(len(EEG), 1)
    n1 = EEG[:, channelNoise].reshape(len(EEG), 1)

    signalWindows = preprocessing.sliding_window(s1, (nx, s1.shape[1]),
                                                 (Fs, s1.shape[1]))
    noiseWindows = preprocessing.sliding_window(n1, (nx, s1.shape[1]),
                                                (Fs, s1.shape[1]))

    msi = featex.MSI(freqs, nx, Fs)
    psda = featex.PSDA(freqs, nx, Fs)

    anc = adapt_filtering.ANC(modelorder, damp)

    befores = np.empty((len(signalWindows), len(freqs)))
    afters = np.empty((len(signalWindows), len(freqs)))
    signalFiltered = np.empty((len(signalWindows), nx, len(channelSignal)))
    for ii, (signalWin, noiseWin) in enumerate(zip(signalWindows,
                                                   noiseWindows)):
        ys = []

        #### ONE FILTER
        _, y = anc.filter(noiseWin, signalWin)

        signalFiltered[ii] = y
        # fig, ax = pl.subplots( nrows=3 )
        # ax[2].plot(y)
        # fb, PSDb = preprocessing.get_psd(signalWin[:,0], nx / Fs, Fs, config.NFFT, ax[0])
        # fa, PSDa = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT, ax[1])
        # pl.show()

        for i, freq in enumerate(freqs):
            x = featex.generate_references(nx, freq, Fs, harmonics)
            # Compute MSI / PSDA indicators
            befores[ii, i] = msi._compute_MSI(x, signalWin)
            # f, PSD = preprocessing.get_psd(win[:,0], nx / Fs, Fs, config.NFFT)
            # befores[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
            afters[ii, i] = msi._compute_MSI(x, y)
            # f, PSD = preprocessing.get_psd(y[:,0], nx / Fs, Fs, config.NFFT)
            # afters[ii, i] = processing.PSDA.compute_SNR(f, PSD, freq, Fs)
        np.round(befores, 3)
        np.round(afters, 3)
        # print afters[ii, :], befores[ii, :]
        # pl.show()

    label = offline.make_label_matrix(EEG.shape[0], config.RECORDING_PERIOD,
                                      window, config.FS, len(freqs))
    # o1 = offline.offline_classify(signalWindows, freqs, msi)
    # o = offline.offline_classify(signalFiltered, freqs, msi)
    # print 100 * performance.get_accuracy(label, o1), 100 * performance.get_accuracy(label, o)

    fig, ax = pl.subplots(nrows=2)
    fig.set_size_inches(12, 8)
    plots = ax[0].plot(befores)
    ax[0].plot(label * np.max(befores))
    ax[0].legend(plots, map(str, freqs), loc=1)
    start, end = ax[0].get_xlim()
    ax[0].xaxis.set_ticks(np.arange(start, end, 5))
    ax[0].grid()
    plots = ax[1].plot(afters)
    ax[1].plot(label * np.max(afters))
    ax[1].legend(plots, map(str, freqs), loc=1)
    ax[1].xaxis.set_ticks(np.arange(start, end, 5))
    ax[1].grid()
    pl.show()
Exemple #8
0
def process_file(dataFile, winLengths, verbose=True):
    # read data
    myData = sio.loadmat(os.path.join(config.DATA_PATH, dataFile))
    X = myData['data']
    # CAR FILTER & PASSBAND FILTER
    Wcritic = np.array([0., 4., 5., 49., 50., 300.])
    b, a = preprocessing._get_fir_filter(Wcritic, FS, 851)
    # X = signal.lfilter(b, [a,], X, axis=0)[len(b) - 1:,:]
    X = signal.fftconvolve(X, b[:, np.newaxis], mode='valid')

    X -= X.mean(axis=0)
    X = np.dot(X, preprocessing.CAR(X.shape[1]))

    # y1 = X[0:160 * FS, :]  # protocol first part, 20s x 2
    y2 = X[160 * FS: 320 * FS, :]  # protocol second part, 10s x 4
    y3 = X[320 * FS: 420 * FS, :]  # protocol first part, 5s x 5

    accuracies = np.zeros((5, len(lengths)))
    ITRs = np.zeros((5, len(lengths)))
    avg_times = np.zeros((5, len(lengths)))

    # Comparison parameters
    # criterion == 'offline' -> classifier just a criterion of maxima. Windows->Output 1:1
    # criterion == 'pseudoon' -> classifier with a confidence criterion. Windows->Output 1:(0|1)
    criterion = 'pseudoon'
    # segment == 'sliding' -> sliding windows with slide = 1 s
    # segment == 'nooverlap' -> windows with no overlap. Only the first and, if present, the second, are considered
    segmenting = 'sliding'

    # FREQUENCY REDUCTION
    # global FREQUENCIES
    # FREQUENCIES = [6.4, 6.9, 8]
    # yi = np.zeros((y3.shape[0] - ITERATIONS * PERIOD * FS, y1.shape[1]))
    # NEW_LENGTH_ITERATION = len(FREQUENCIES) * PERIOD * FS
    # for i in range(ITERATIONS):
    #     buf = y3[PERIOD * FS + i * LENGTH_ITERATION : (i+1) * LENGTH_ITERATION,:]
    #     yi[i * NEW_LENGTH_ITERATION:i * NEW_LENGTH_ITERATION + len(buf)] = buf

    yi = y2

    for il, length in enumerate(winLengths):
        if verbose:
            print 'Window %d' % length
        if criterion == 'offline':
            actualWindow = length
        elif criterion == 'pseudoon':
            actualWindow = length - 1
            # actualWindow = length

        y = yi[:, np.in1d(config.SENSORS_SANDRA, ['O2', 'Oz', 'O1'])]

        # 3 channels CCA
        method = featex.CCA(list(FREQUENCIES), actualWindow * FS, FS)
        acc, avg_time = apply_method(y, length, segmenting, criterion, method)

        accuracies[0, il] = acc * 100
        avg_times[0, il] = avg_time
        ITRs[0, il] = performance.get_ITR(4, acc, avg_time) * 60

        # 3 channels MSI
        method = featex.MSI(list(FREQUENCIES), actualWindow * FS, FS)
        acc, avg_time = apply_method(y, length, segmenting, criterion, method)

        accuracies[1, il] = acc * 100
        avg_times[1, il] = avg_time
        ITRs[1, il] = performance.get_ITR(4, acc, avg_time) * 60

        # 2 channels MSI
        y = yi[:, np.in1d(config.SENSORS_SANDRA, ['O2', 'Oz'])]
        method = featex.MSI(list(FREQUENCIES), actualWindow * FS, FS)
        acc, avg_time = apply_method(y, length, segmenting, criterion, method)

        accuracies[2, il] = acc * 100
        avg_times[2, il] = avg_time
        ITRs[2, il] = performance.get_ITR(4, acc, avg_time) * 60
        # 1 channel MSI
        y = yi[:, np.in1d(config.SENSORS_SANDRA, ['Oz'])]
        method = featex.MSI(list(FREQUENCIES), actualWindow * FS, FS)
        acc, avg_time = apply_method(y, length, segmenting, criterion, method)

        accuracies[3, il] = acc * 100
        avg_times[3, il] = avg_time
        ITRs[3, il] = performance.get_ITR(4, acc, avg_time) * 60

        # 1 channel PSDA
        y = yi[:, np.in1d(config.SENSORS_SANDRA, ['Oz'])]
        method = featex.PSDA(list(FREQUENCIES), actualWindow * FS, FS)
        acc, avg_time = apply_method(y, length, segmenting, criterion, method)

        accuracies[4, il] = acc * 100
        avg_times[4, il] = avg_time
        ITRs[4, il] = performance.get_ITR(4, acc, avg_time) * 60

    return accuracies, avg_times, ITRs
        0:150 * Fs, channelS:channelS +
        1]  # - X[0:160*Fs, channelN:channelN+1] # protocol first part, 20s x 2
    n1 = Y[0:150 * Fs, channelS:channelS + 1]
    # l1 = offline.make_label_matrix(s1.shape[0], period=20, window=WINLENGTH, fs=Fs, classes=4)

    #...............................................................................
    # title = "LMS  noise cancellation  filterlen %d  nx %d  noise %.2g  mu %.2g " % (
    # fOrder, nx, channelN, damp )
    # print title

    signalWindows = preprocessing.sliding_window(s1, (nx, s1.shape[1]),
                                                 (Fs, s1.shape[1]))
    noiseWindows = preprocessing.sliding_window(n1, (nx, s1.shape[1]),
                                                (Fs, s1.shape[1]))

    classifier = featex.MSI(freqs, nx - fOrder, Fs)

    outMonopolar = np.zeros(signalWindows.shape[0])
    outFiltered = np.zeros(signalWindows.shape[0])
    SNRsignal = np.zeros(signalWindows.shape[0])
    SNRnoise = np.zeros(signalWindows.shape[0])
    l1 = np.zeros(signalWindows.shape[0])
    l1.fill(3)
    for ii, (signalWin, noiseWin) in enumerate(zip(signalWindows,
                                                   noiseWindows)):
        ys = []
        epss = []

        Fxx, Pxx = preprocessing.get_psd(signalWin[:, 0], WINLENGTH, Fs,
                                         config.NFFT)
        Fyy, Pyy = preprocessing.get_psd(noiseWin[:, 0], WINLENGTH, Fs,