Exemple #1
0
def sampling_phase(sampling_period, sampling_time, corr_ab=0.9, corr_ae=0.4):
    '''
    sampling_period: 采样周期/采样间隔。单位ms。每隔一个采样周期,可采集到一个样本
    sampling_time:   采样时间。单位s。一共采样了这么长的时间,也即每隔一个采样时间,更新一次密钥/导频位置
    corr_ab:         Alice和Bob的信道测量值的相关系数
    corr_ae:         Alice和Eve的信道测量值的相关系数    
                     注:在给定相关系数corr时,得到与samples_A满足corr的samples_B(或samples_E)
    返回值:           采样序列。一共有time/period个采样点。如period=1,time=25,共采样25*1000/1=25000个
    '''

    sampling_num = sampling_time * 1000 / sampling_period
    corr_SNR_dict = {
        0.1: 6,
        0.2: 8,
        0.3: 10,
        0.4: 12,
        0.5: 14,
        0.6: 17,
        0.7: 20,
        0.8: 23,
        0.9: 29,
        1.0: 1000
    }
    samples_A = 2 * pi * random(sampling_num)  # [0,2pi)之间均匀分布
    samples_B = mod(awgn(samples_A, corr_SNR_dict[corr_ab]), 2 * pi)
    samples_E = mod(awgn(samples_A, corr_SNR_dict[corr_ae]), 2 * pi)
    return samples_A, samples_B, samples_E
Exemple #2
0
def transmission(x, SNR=dSNR, L=dL, K=dK, N=dN, Ncp=dNcp):
    ''' 
    x:   发送端的发送信号
    SNR: 信噪比
    L:   信道长度
    K:   稀疏度
    N:   子载波数
    Ncp: 循环前缀长度
    '''
    ''' 时域的信道脉冲响应'''
    h = channel(L, K)
    ''' 信道频率响应H '''
    W = fftMatrix(N, L)  # 傅里叶正变换矩阵,即:使稀疏的h变为不稀疏的H的基
    H = dot(W, h)  # 频率的冲激响应
    H.shape = (N, 1)
    ''' 不考虑循环前缀在信道中的传输 '''
    x = x[:, Ncp:]
    x = x.reshape(N)
    # 将发送信号作为观测矩阵的对角元素,X=diag(X(0),X(1),...,X(N-1))是N*N的子载波矩阵
    X = fft(x)
    ''' 测量矩阵 '''
    X = diag(X)
    ''' 理想信道传输 '''
    X_H = dot(X, H)
    ''' 添加高斯白噪声,得接收信号向量Y '''
    Y = awgn(X_H, SNR)  # 加入复高斯白噪声,得到接收到的信号(频域表示)
    #No = Y-X_H                  # Y = X*H + No

    y = ifft(Y, axis=0)
    y = y.reshape(1, N)
    y = np.c_[y[:, -Ncp:], y]

    return h, H, y
Exemple #3
0
def draw_SNR_corr(stype, sampling_period, sampling_time):

    SNR = range(0, 51, 1)
    group = 100
    SNR_num = len(SNR)
    corr = zeros((group, SNR_num))
    if stype == 'RSSI':
        samples_A, temp, temp = sampling_RSSI(sampling_period, sampling_time)
    elif stype == 'Phase':
        samples_A, temp, temp = sampling_phase(sampling_period, sampling_time)

    for i in range(group):
        print 'running...', i
        for j in range(SNR_num):
            samples_B = awgn(samples_A, SNR[j])
            if stype == 'Phase':
                samples_B = mod(samples_B, 2 * pi)
            corr[i, j] = corrcoef(samples_A, samples_B, rowvar=0)[0, 1]
    corr = mean(corr, 0)

    plt.figure(figsize=(8, 5))
    plt.plot(SNR, corr, 'bo-')
    plt.xlabel('SNR(dB)')
    plt.ylabel('Corrcoef')
    plt.title('Corrcoef in different SNR for ' + stype)
Exemple #4
0
def transmission(x, L, K, N, M, Ncp, Nt, Nr, SNR):
    ''' 
    x: 发送端的发送信号
    L: 信道长度
    K: 稀疏度
    N: 子载波数
    M: 每帧的OFDM符号数
    Ncp: 循环前缀长度
    Nt: 发送天线数
    Nr: 接收天线数
    SNR: 信噪比
    '''
    ''' 时域/频域的信道响应'''
    h = zeros((Nr, Nt, L), dtype=np.complex)
    H = zeros((Nr, Nt, N), dtype=np.complex)
    for r in range(Nr):
        for t in range(Nt):
            h[r, t, :] = channel(L, K)  # 第r个接收天线,与第t个发送天线的1个符号周期内的信道脉冲响应
            H[r, t, :] = dot(fftMatrix(N, L), h[r, t, :])  # 信道频率响应
    ''' 傅里叶正变换矩阵 '''
    W = fftMatrix((N + Ncp), L)  # 傅里叶正变换矩阵,即:使稀疏的h变为不稀疏的H的基
    W_M = W  # 对于慢时变信道,在M个符号周期内,H保持不变。相当于对W做M次重复
    for i in range(M - 1):
        W_M = np.r_[W_M, W]

    for t in range(Nt):
        ''' 第t个天线的发送数据 '''
        x_t = x[:, t]
        ''' 将时域的发送信号,变换到频域 '''
        X_t = fft(x_t)
        ''' 测量矩阵 '''
        X_t = diag(
            X_t)  # 将发送信号作为观测矩阵的对角元素,X=diag(X(0),X(1),...,X(N-1))是N*N的子载波矩阵

        if t == 0:
            X_wave = dot(X_t, W_M)
        else:
            X_wave = np.c_[X_wave, dot(X_t, W_M)]
    ''' X_wave与Nr*Nr单位矩阵的克罗内克积 '''
    Kronecker = kron(eye(Nr, Nr), X_wave)
    ''' Nt*Nr*L的信道脉冲响应向量 '''
    for r in range(Nr):
        for t in range(Nt):
            h_rt = h[r, t, :].reshape(-1, 1)  # 第r个接收天线,与第t个发送天线的1个符号周期内的信道脉冲响应
            if r == 0 and t == 0:
                h_vector = h_rt
            else:
                h_vector = np.r_[h_vector, h_rt]
    ''' 理想信道传输 '''
    Y = dot(Kronecker, h_vector)
    ''' AWGN '''
    Y = awgn(Y, SNR)

    y = Y.reshape(-1, Nr)
    y = ifft(y, axis=0)

    return h, H, y
Exemple #5
0
        corr_SNR_dict = {
            0.1: 6,
            0.2: 8,
            0.3: 10,
            0.4: 12,
            0.5: 14,
            0.6: 17,
            0.7: 20,
            0.8: 23,
            0.9: 29,
            1.0: 1000
        }
        samples_A = 2 * pi * random(sampling_num)  # [0,2pi)之间均匀分布

    samples_B = awgn(samples_A, corr_SNR_dict[corr_ab])
    samples_E = awgn(samples_A, corr_SNR_dict[corr_ae])
    return samples_A, samples_B, samples_E


def draw_SNR_corr(stype, sampling_period, sampling_time):

    SNR = range(0, 51, 1)
    group = 100
    SNR_num = len(SNR)
    corr = zeros((group, SNR_num))
    samples_A, temp, temp = sampling(stype, sampling_period, sampling_time)

    for i in range(group):
        print 'running...', i
        for j in range(SNR_num):