def measure_curvature_real_dat(left_fit_cr, right_fit_cr):
    '''
    Calculates the curvature of polynomial functions in meters.
    '''
    # Define conversions in x and y from pixels space to meters
    ym_per_pix = 30 / 720  # meters per pixel in y dimension
    xm_per_pix = 3.7 / 700  # meters per pixel in x dimension

    # Start by generating our fake example data
    # Make sure to feed in your real data instead in your project!
    #ploty, left_fit_cr, right_fit_cr = generate_data(ym_per_pix, xm_per_pix)

    ploty = np.linspace(0,
                        GlobalVar.get_orig_image().shape[0] - 1,
                        GlobalVar.get_orig_image().shape[0])

    # Define y-value where we want radius of curvature
    # We'll choose the maximum y-value, corresponding to the bottom of the image
    y_eval = np.max(ploty)

    ##### TO-DO: Implement the calculation of R_curve (radius of curvature) #####
    left_curverad = ((1 + ((2 * (left_fit_cr[0] ) *(y_eval * ym_per_pix ) + (left_fit_cr[1] )) ** 2)) ** (3 / 2)) \
                    / (np.absolute(2 * (left_fit_cr[0] ) ))  ## Implement the calculation of the left line here
    right_curverad = ((1 + ((2 * (right_fit_cr[0] ) * (y_eval * ym_per_pix ) + (right_fit_cr[1]  )) ** 2)) ** (3 / 2)) \
                     / (np.absolute(2 * (right_fit_cr[0] )))  ## Implement the calculation of the left line here

    return left_curverad, right_curverad
Exemple #2
0
def pipeline(img):
    # Get undistorted image
    out_img = img
    GlobalVar().set_orig_image(img)
    undistorted_img = get_undistorted_image(img)
    thresh_bin_img = get_threshold_binary_image(undistorted_img)
    warped_img = apply_perspective(thresh_bin_img)
    left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty, out_img = find_lane_boundary(
        warped_img)
    from util.radius_curve import measure_curvature_real
    left_curverad, right_curverad = measure_curvature_real(
        warped_img, left_fitx, right_fitx)
    average_left_fitx = left_fitx
    average_right_fitx = right_fitx
    offset = 0.0
    average_left_fit = left_fit
    average_right_fit = right_fit

    if is_santiycheck_ok(img.shape, left_fit, right_fit, left_fitx, right_fitx,
                         leftx, lefty, rightx, righty, left_curverad,
                         right_curverad):

        left_line, right_line = initialize_lines(left_fit, left_fitx, leftx,
                                                 lefty, right_fit, right_fitx,
                                                 rightx, righty)

        offset, offsetLeftLine, offsetRightLine = calculate_offset(
            img, left_fitx, right_fitx)

        left_line.line_base_pos = offsetLeftLine
        right_line.line_base_pos = offsetRightLine
        GlobalVar().set_offset(offset)

        left_line.radius_of_curvature = left_curverad
        right_line.radius_of_curvature = right_curverad

        average_left_fit, average_right_fit, average_left_fitx, average_right_fitx = process_lines(
            left_fit, left_fitx, left_line, right_fit, right_fitx, right_line)
        GlobalVar().line_detected.append(True)

        GlobalVar().left_lines.append(left_line)
        GlobalVar().right_lines.append(right_line)

    elif (len(GlobalVar().left_lines) > 0) & (len(GlobalVar().right_lines) >
                                              0):
        average_left_fit, average_right_fit, average_left_fitx, average_right_fitx, left_curverad, right_curverad, offset = get_last_conf_vals(
        )

    ploty = np.linspace(0, img.shape[0] - 1, img.shape[0])
    GlobalVar().set_left_fit(average_left_fit)
    GlobalVar().set_right_fit(average_right_fit)
    if bool(np.array(average_left_fitx).any()) & bool(
            np.array(average_right_fitx).any()):
        offset = GlobalVar().offset
        out_img = plot_back_to_orig(average_left_fitx, average_right_fitx,
                                    ploty)
        annotate_vals(left_curverad, offset, out_img, right_curverad)

        # print(left_curverad, 'm', right_curverad, 'm', '\n')
    return out_img
Exemple #3
0
def is_lane_detected():
    ret_bool = True

    if ((GlobalVar().get_idx()) % (GlobalVar().line_detected.maxlen)) == 0:
        line_detected = GlobalVar().line_detected
        ret_bool = False
        for line_bool in line_detected:
            ret_bool |= line_bool
    return ret_bool
Exemple #4
0
def get_undistorted_image(img):
    # Use cv2.calibrateCamera() and cv2.undistort()
    # Convert to grayscale
    grayscaleimage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    obj_points, img_points, = GlobalVar().ret_calib_points()
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
        obj_points, img_points, grayscaleimage.shape[::-1], None, None)
    undist = cv2.undistort(img, mtx, dist, None, mtx)
    return undist
Exemple #5
0
def process_lines(left_fit, left_fitx, left_line, right_fit, right_fitx,
                  right_line):
    left_lines = GlobalVar().left_lines
    recent_xfitted = []
    recent_polycoeff = []
    average_left_fit = left_fit
    average_left_fitx = left_fitx
    average_right_fitx = right_fitx
    if (len(left_lines) > 0):
        for temp_line in left_lines:
            recent_xfitted.append(temp_line.current_fitx)
            recent_polycoeff.append(temp_line.current_fit)

        average_left_fitx = np.mean(recent_xfitted, axis=0, keepdims=True)
        if len(recent_polycoeff) > 1:
            average_left_fit = np.mean(recent_polycoeff,
                                       axis=0,
                                       keepdims=False)
        fit_diifs = np.subtract(left_fit,
                                recent_polycoeff[len(recent_polycoeff) - 1])
        left_line.best_fit = average_left_fit
        left_line.bestx = average_left_fitx
        left_line.diffs = fit_diifs
    # Right Lane Lines
    right_lines = GlobalVar().right_lines
    recent_xfitted = []
    recent_polycoeff = []
    average_right_fit = right_fit
    if (len(right_lines) > 0):
        for temp_line in right_lines:
            recent_xfitted.append(temp_line.current_fitx)
            recent_polycoeff.append(temp_line.current_fit)
        average_right_fitx = np.mean(recent_xfitted, axis=0, keepdims=True)
        if len(recent_polycoeff) > 1:
            average_right_fit = np.mean(recent_polycoeff,
                                        axis=0,
                                        keepdims=False)
        fit_diifs = np.subtract(right_fit,
                                recent_polycoeff[len(recent_polycoeff) - 1])
        right_line.best_fit = average_right_fit
        right_line.bestx = average_right_fitx
        right_line.diffs = fit_diifs
    return average_left_fit, average_right_fit, average_left_fitx, average_right_fitx
Exemple #6
0
def plot_back_to_orig(left_fitx, right_fitx, ploty):
    # Create an image to draw the lines on
    warp_zero = np.zeros_like(GlobalVar().get_orig_image()).astype(np.uint8)
    #color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

    #ploty = np.linspace(0, orig_image.shape[0] - 1, orig_image.shape[0])
    # Recast the x and y points into usable format for cv2.fillPoly()
    pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
    pts_right = np.array(
        [np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
    pts = np.hstack((pts_left, pts_right))

    # Draw the lane onto the warped blank image
    cv2.fillPoly(warp_zero, np.int_([pts]), (0, 255, 0))
    Minv = cv2.getPerspectiveTransform(dst, src)
    # Warp the blank back to original image space using inverse perspective matrix (Minv)
    newwarp = cv2.warpPerspective(warp_zero, Minv,
                                  (GlobalVar().get_orig_image().shape[1],
                                   GlobalVar().get_orig_image().shape[0]))
    # Combine the result with the original image
    result = cv2.addWeighted(GlobalVar().get_orig_image(), 1, newwarp, 0.3, 0)
    return result
Exemple #7
0
def get_last_conf_vals():
    average_left_fitx = []
    average_right_fitx = []
    left_curverad = []
    right_curverad = []
    if len(GlobalVar().left_lines) > 0:
        left_lane = GlobalVar().left_lines[len(GlobalVar().left_lines) - 1]
        left_curverad = left_lane.radius_of_curvature
        average_left_fitx = left_lane.bestx
        average_left_fit = left_lane.best_fit

    if len(GlobalVar().right_lines) > 0:
        right_lane = GlobalVar().right_lines[len(GlobalVar().right_lines) - 1]
        right_curverad = right_lane.radius_of_curvature
        average_right_fitx = right_lane.bestx
        average_right_fit = right_lane.best_fit

    offset = GlobalVar().get_offset()

    return average_left_fit, average_right_fit, average_left_fitx, average_right_fitx, left_curverad, right_curverad, offset
Exemple #8
0
def find_lane_boundary(img):

    from util.sliding_window import fit_polynomial
    #left_fitx = right_fitx = leftx = lefty = rightx = righty = []
    if (GlobalVar().get_idx() <= 0) | (not is_lane_detected()) | bool(
            np.array(GlobalVar().get_left_fit()).any()) & bool(
                np.array(GlobalVar().get_right_fit()).any()):
        left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty, out_img = fit_polynomial(
            img)
        GlobalVar().set_left_fit(left_fit)
        GlobalVar().set_right_fit(right_fit)
    elif GlobalVar().get_left_fit().shape[0] == img.shape[0]:
        from util.prev_poly import search_around_poly
        left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty = search_around_poly(
            img,
            GlobalVar().get_left_fit(),
            GlobalVar().get_right_fit())
    GlobalVar().set_idx(GlobalVar().get_idx() + 1)

    # win_center_img = find_window_centroids(img)
    return GlobalVar().get_left_fit(), GlobalVar().get_right_fit(
    ), left_fitx, right_fitx, leftx, lefty, rightx, righty, out_img
import glob

import cv2

from util.global_variables import GlobalVar


def test_get_undistort_image(objpoints, imgpoints):
    # Make a list of calibration images
    #images = glob.glob('../test_images/*.jpg')
    images = glob.glob('../camera_cal/*.jpg')
    # Step through the list and search for chessboard corners
    idx = 1
    for fname in images:
        img = cv2.imread(fname)
        from util.Utils import get_undistorted_image
        undist = get_undistorted_image(img)

        cv2.imwrite("../output_images/calib" + str(idx) + "_output.jpg",
                    undist)
        idx += 1


obj_points, img_points = GlobalVar().ret_calib_points()
test_get_undistort_image(obj_points, img_points)