def eval_lpdf(stan_binary, data, parameters): # Get temp directory tmpdirec = tempfile.TemporaryDirectory() tmpdir = tmpdirec.name # create data file data_file = os.path.join(tmpdir, "data.R") io.rdump(data_file, data) # Create continuation file param_file = os.path.join(tmpdir, "param.R") io.rdump(param_file, parameters) # Run it for one iteration out_file = os.path.join(tmpdir, "out.csv") run = subprocess.run([ stan_binary, "sample", "num_warmup=0", "num_samples=1", "adapt", "engaged=0", "data", f"file={data_file}", f"init={param_file}", "output", f"file={out_file}" ], capture_output=True) assert run.returncode == 0 # Parse the results lp = io.parse_csv(out_file)['lp__'][0] return lp
def viz_mean_excitability(sid, rid): regpos, w, obsmask, surfaces, contacts = read_structural_data(sid, rid) vlines, vmeshes, vcontacts = viz_structure(regpos, w, surfaces, contacts) # Load results nreg = regpos.shape[0] res = io.parse_csv([ f"run/solo/INC/vep/id{sid:03d}/output/r{rid:02d}_all/chain_{chain}.csv" for chain in [1, 2] ]) cinf = res['c'] # cmean = np.mean(cinf, axis=0) # pexc = np.mean(cinf > 2.0, axis=0) scalar = np.percentile(cinf, 50, axis=0) # Regions cmap = 'plasma' # vmin = np.min(scalar) # vmax = np.max(scalar) vmin, vmax = -2, 2 vpoints = [] for i in range(nreg): if not obsmask[i]: vpoints.append( vp.Sphere(regpos[i], r=4, c=vp.colorMap(scalar[i], cmap, vmin, vmax))) else: vpoints.append( vp.Cube(regpos[i], side=6, c=vp.colorMap(scalar[i], cmap, vmin, vmax))) vbar = vp.Points(regpos, r=0.01).pointColors(scalar, cmap=cmap, vmin=vmin, vmax=vmax) vbar.addScalarBar(horizontal=True, pos=(0.8, 0.02)) def slider(widget, event): percentile = widget.GetRepresentation().GetValue() scalar = np.percentile(cinf, percentile, axis=0) for i in range(nreg): vpoints[i].color(vp.colorMap(scalar[i], cmap, vmin, vmax)) vplotter = vp.Plotter(axes=0) vplotter.addSlider2D(slider, 0., 100., value=50.0, pos=3, title="Percentile") vplotter.show(vpoints, vlines, vmeshes, vcontacts, vbar)
def get_data(surgeries, onset): rows = [] for subject, surgery in surgeries.items(): res_dir = f"run/solo/{onset}/vep/{subject}/output/" rec_dirs = glob.glob(os.path.join(res_dir, "r*_all/")) for rec_dir in rec_dirs: rid = int(rec_dir[-7:-5]) indata = io.rload(f"run/solo/{onset}/vep/{subject}/input/r{rid:02d}_all.R") reg_sz = list(indata['reg_sz'].astype(int)) reg_ns = list(indata['reg_ns'].astype(int)) reg_obs = reg_sz + reg_ns resfiles = [os.path.join(rec_dir, f"chain_{chain}.csv") for chain in CHAINS] statuses = [os.path.join(rec_dir, f"chain_{chain}.status") for chain in CHAINS] res = io.parse_csv([r for r, s in zip(resfiles, statuses) if int(open(s).read().strip())]) pez = np.mean(res['c'] > EZ_THRESHOLD, axis=0) resec = np.array(surgery['resection']) is_resected = np.array(resec) > RESEC_THRESHOLD if not np.any(is_resected): is_resected[np.argmax(resec)] = True for i in range(NREG): rows.append(OrderedDict( onset=onset, subject=subject, rid=rid, region=i, observed=(i in reg_obs), seizing=(i in reg_sz), fracsz=(len(reg_sz) / len(reg_obs)), pez=pez[i], resection=resec[i], is_resected=is_resected[i], engel=surgery['engel'] )) df = pd.DataFrame(rows) dfg = df.groupby(['onset', 'subject', 'region']).agg( {'observed': 'any', 'seizing': 'any', 'fracsz': 'first', 'pez': 'mean', 'resection': 'first', 'is_resected': 'first', 'engel': 'first'}).reset_index() return dfg
def viz_excitability(sid, rid): regpos, w, obsmask, surfaces, contacts = read_structural_data(sid, rid) vlines, vmeshes, vcontacts = viz_structure(regpos, w, surfaces, contacts) # Load results nreg = regpos.shape[0] res = io.parse_csv([ f"run/solo/INC/vep/id{sid:03d}/output/r{rid:02d}_all/chain_{chain}.csv" for chain in [1, 2] ]) cinf = res['c'] ctr = 2.0 pexc = np.mean(cinf > ctr, axis=0) # Regions cmap = 'Reds' vmin, vmax = 0, 0.15 # vmin, vmax = -2, 0 vpoints = [] for i in range(nreg): if not obsmask[i]: vpoints.append( vp.Sphere(regpos[i], r=4, c=vp.colorMap(pexc[i], cmap, vmin, vmax))) else: vpoints.append( vp.Cube(regpos[i], side=6, c=vp.colorMap(pexc[i], cmap, vmin, vmax))) vbar = vp.Points(regpos, r=0.01).pointColors(pexc, cmap=cmap, vmin=vmin, vmax=vmax) vbar.addScalarBar(horizontal=True, pos=(0.8, 0.02)) def cslider(widget, event): ctr = widget.GetRepresentation().GetValue() pexc = np.mean(cinf > ctr, axis=0) for i in range(nreg): vpoints[i].color(vp.colorMap(pexc[i], cmap, vmin, vmax)) vplotter = vp.Plotter(axes=0) vplotter.addSlider2D(cslider, -3.0, 3.0, value=2.0, pos=3, title="c") vplotter.show(vpoints, vlines, vmeshes, vcontacts, vbar)
def viz_seizure(sid, rid): regpos, w, obsmask, surfaces, contacts = read_structural_data(sid, rid) vlines, vmeshes, vcontacts = viz_structure(regpos, w, surfaces, contacts) # Load results nreg = regpos.shape[0] res = io.parse_csv([ f"run/solo/INC/vep/id{sid:03d}/output/r{rid:02d}_all/chain_{chain}.csv" for chain in [1, 2] ]) tinf = res['t'] t = 0.0 psz = np.mean(tinf < t, axis=0) # Regions cmap = 'bwr' vmin, vmax = 0, 1 vpoints = [] for i in range(nreg): if not obsmask[i]: vpoints.append( vp.Sphere(regpos[i], r=4, c=vp.colorMap(psz[i], cmap, vmin, vmax))) else: vpoints.append( vp.Cube(regpos[i], side=6, c=vp.colorMap(psz[i], cmap, vmin, vmax))) vbar = vp.Points(regpos, r=0.01).pointColors(psz, cmap=cmap, vmin=vmin, vmax=vmax) vbar.addScalarBar(horizontal=True, pos=(0.8, 0.02)) def tslider(widget, event): t = widget.GetRepresentation().GetValue() psz = np.mean(tinf < t, axis=0) for i in range(nreg): vpoints[i].color(vp.colorMap(psz[i], cmap, vmin, vmax)) vplotter = vp.Plotter(axes=0) vplotter.addSlider2D(tslider, 0, 90.0, value=0.0, pos=3, title="t") vplotter.show(vpoints, vlines, vmeshes, vcontacts, vbar)
def make_video(sid, rid, video_file): regpos, w, obsmask, surfaces, contacts = read_structural_data(sid, rid) vlines, vmeshes, vcontacts = viz_structure(regpos, w, surfaces, contacts) # Load results res = io.parse_csv([ f"run/solo/INC/vep/id{sid:03d}/output/r{rid:02d}_all/chain_{chain}.csv" for chain in [1, 2] ]) tinf = res['t'] t = 0.0 psz = np.mean(tinf < t, axis=0) nreg = regpos.shape[0] # Regions cmap = 'bwr' vpoints = [] for i in range(nreg): if not obsmask[i]: vpoints.append( vp.Sphere(regpos[i], r=4, c=vp.colorMap(psz[i], cmap, 0, 1))) else: vpoints.append( vp.Cube(regpos[i], side=6, c=vp.colorMap(psz[i], cmap, 0, 1))) vbar = vp.Points(regpos, r=0.01).pointColors(psz, cmap=cmap, vmin=0, vmax=1) vbar.addScalarBar(horizontal=True, pos=(0.8, 0.02)) vtext = vp.Text2D(f"t = {t:4.1f} s", pos=0, s=2, c='black') center = np.mean(regpos, axis=0) dist = 2.5 * (np.max(regpos[:, 1]) - np.min(regpos[:, 1])) # Video ------------------------------------------------------- vplotter = vp.Plotter(axes=0, interactive=0, offscreen=True, size=(1800, 1800)) nframes = 3000 vplotter += vpoints vplotter += vlines vplotter += vmeshes video = vp.Video(name=video_file, duration=90) ratios = np.array([30, 3, 5, 30, 5, 3, 30, 10]) frames = (nframes * ratios / np.sum(ratios)).astype(int) # Run and pause animate(vplotter, video, frames[0], vpoints, tinf, pos=center + dist * np.r_[0, 0, 1], foc=center, viewup=(0, 1, 1), prange=(0, 45), time=lambda p: p) animate(vplotter, video, frames[1], vpoints, tinf, pos=center + dist * np.r_[0, 0, 1], foc=center, viewup=(0, 1, 1), time=45.) ## Fly around pos = lambda angle: center + dist * np.array( [0, -np.sin(angle), np.cos(angle)]) animate(vplotter, video, frames[2], vpoints, tinf, pos=pos, foc=center, viewup=(0, 1, 1), prange=(0, np.pi / 2), time=45., endpoint=False) pos = lambda angle: center + dist * np.array( [-np.sin(angle), -np.cos(angle), 0]) animate(vplotter, video, frames[3], vpoints, tinf, pos=pos, foc=center, viewup=(0, 0, 1), prange=(0, 2 * np.pi), time=45.) pos = lambda angle: center + dist * np.array( [0, -np.sin(angle), np.cos(angle)]) animate(vplotter, video, frames[4], vpoints, tinf, pos=pos, foc=center, viewup=(0, 1, 1), prange=(np.pi / 2, 0), time=45., startpoint=False) # Pause + run + pause animate(vplotter, video, frames[5], vpoints, tinf, pos=center + dist * np.r_[0, 0, 1], foc=center, viewup=(0, 1, 1), time=45.) animate(vplotter, video, frames[6], vpoints, tinf, pos=center + dist * np.r_[0, 0, 1], foc=center, viewup=(0, 1, 1), prange=(45, 90), time=lambda p: p) animate(vplotter, video, frames[7], vpoints, tinf, pos=center + dist * np.r_[0, 0, 1], foc=center, viewup=(0, 1, 1), time=90.) video.close()