from util.option import parser from util import template # Group parser.add_argument('--group_size', type=int, default=16, help='group size for the network of filter group approximation, ECCV 2018 paper.') # DenseNet Basis parser.add_argument('--n_group', type=int, default=1, help='number of groups for the compression of densenet') parser.add_argument('--k_size1', type=int, default=3, help='kernel size 1') parser.add_argument('--k_size2', type=int, default=3, help='kernel size 2') parser.add_argument('--inverse_index', action='store_true', help='index the basis using inverse index') parser.add_argument('--transition_group', type=int, default=6, help='number of groups in the transition layer of DenseNet') # ResNet Basis parser.add_argument('--basis_size1', type=int, default=16, help='basis size for the first res group in ResNet') parser.add_argument('--basis_size2', type=int, default=32, help='basis size for the second res group in ResNet') parser.add_argument('--basis_size3', type=int, default=64, help='basis size for the third res group in ResNet') parser.add_argument('--n_basis1', type=int, default=24, help='number of basis for the first res group in ResNet') parser.add_argument('--n_basis2', type=int, default=48, help='number of basis for the second res group in ResNet') parser.add_argument('--n_basis3', type=int, default=84,
from util.option import parser from util import template # Prune specification # Possible unused parser.add_argument('--prune_procedure', default='complete', choices=['complete', 'undergoing', 'final'], help='pruning procedure.') parser.add_argument('--prune_weight_decay', type=float, default=0.001, help='weight decay during--distillation pruning phase.') parser.add_argument('--prune_decay', type=str, default='step-100-200-300', help='decay step during pruning phase') parser.add_argument('--prune_lr', type=float, default=0.1, help='learning rate during pruning phase.') parser.add_argument('--prune_iteration', type=int, default=250, help='number of iterations during pruning phase.') parser.add_argument('--prune_solver', default='SGD', choices=['SGD', 'PG'], help='pruning optimization method.') parser.add_argument( '--load_original_param',
from util.option import parser from util import template # differentiable pruning via hypernetworks parser.add_argument( '--prune_threshold', type=float, default=5e-3, help='the threshold used to mask out or nullifying the small elements.') parser.add_argument('--regularization_factor', type=float, default=1e-4, help='the sparsity regularization factor.') parser.add_argument('--stop_limit', type=float, default=0.05, help='the stop limit of the binary searching method') parser.add_argument( '--prune_same_channels', type=str, default='Yes', choices=['Yes', 'No'], help= 'whether to prune the same channels for the blocks in the same stage of ResNet' ) parser.add_argument( '--embedding_dim', type=int, default=8, help='the dimension of per-location element in the latent matrix') # parser.add_argument('--finetune', action='store_true',