Exemple #1
0
def main():

    transformations = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    train_dataset = CifarDataset(TRAIN_CSV_PATH, TRAIN_IMG_PATH, transformations)
    train_loader = CifarDataloader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)
    test_dataset = CifarDataset(TEST_CSV_PATH, TEST_IMG_PATH, transformations)
    test_loader = CifarDataloader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)

    model = resnet50(pretrained=True, num_classes=10)
    criterion = nn.CrossEntropyLoss()

    if USE_GPU:
        model = model.cuda()
        criterion = criterion.cuda()

    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

    # load_checkpoint(os.path.join('checkpoint', 'last_checkpoint.pth.tar'), model, optimizer)

    for epoch in range(EPOCHS):
        train(train_loader, model, criterion, optimizer, epoch+1, USE_GPU)
        test(test_loader, model, USE_GPU)
        save_checkpoint({
            'epoch': epoch+1,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }, os.path.join('checkpoint'))
Exemple #2
0
def new_training_data():
    try:
        training_data = request.get_json()
        if training_data is None:
            raise BadRequest(description=NO_JSON)
        train(training_data)
    except BadRequest as e:
        return json_error_message('Failed to parse JSON data',
                                  error_data=e.description)

    return json_success('Training data added successfully')
Exemple #3
0
train_batch_size = 50
test_batch_size = 50
lr = 1e-4

if (__name__ == '__main__'):
    # use pre-trained embed if avalible
    word_embed = th.Tensor(vocab_size, embed_dim)
    label_embed = th.Tensor(label_num, embed_dim)

    net = HyperIM(word_num,
                  word_embed,
                  label_embed,
                  hidden_size=embed_dim,
                  if_gru=if_gru)
    net.to(cuda_device)

    loss = nn.BCEWithLogitsLoss()
    optim = gt.optim.RiemannianAdam(net.parameters(), lr=lr)

    train_data_loader, test_data_loader = data.load_data(
        data_path, train_batch_size, test_batch_size, word_num)

    train.train(epoch,
                net,
                loss,
                optim,
                if_neg_samp=False,
                train_data_loader=train_data_loader)
    evalu.evaluate(net, if_log=if_log, test_data_loader=test_data_loader)
Exemple #4
0
if __name__ == '__main__':
    tf.enable_eager_execution()

    parser = argparse.ArgumentParser(
        description='Train using a specified config')
    parser.add_argument('--config', help='config to run')
    parser.add_argument('--experiment', help='experiment to run')
    parser.add_argument('--experiment_name',
                        help='name of the experiment for logging')
    parser.add_argument('--experiment_index',
                        help='index of the experiment to run',
                        type=int)
    parser.add_argument(
        '--split',
        help='cross validation split number to use as validation data',
        default=None,
        type=int)
    args = parser.parse_args()

    if args.experiment:
        experiments = generate_configs_from_experiment(args.experiment)
        conf = copy.deepcopy(experiments[args.experiment_index])
        if args.split is not None:
            conf['dataset']['cross_validation_split'] = args.split
        train(conf, args.experiment_name)
    else:
        conf = copy.deepcopy(configs[args.config])
        if args.split is not None:
            conf['dataset']['cross_validation_split'] = args.split
        train(conf, args.experiment_name)
import tensorflow as tf

import boto3
import json
import os
import sys
import time

from util.train import train

conn_sqs = boto3.resource('sqs')

if __name__ == '__main__':
    tf.enable_eager_execution()
    queue = conn_sqs.get_queue_by_name(QueueName='experiment-configs')
    messages = queue.receive_messages(
        MaxNumberOfMessages=1,
        MessageAttributeNames=['experiment_name'],
        WaitTimeSeconds=0)

    for message in messages:
        conf = json.loads(message.body)
        experiment_name = message.message_attributes.get(
            'experiment_name').get('StringValue')
        message.delete()
        train(conf, experiment_name)
Exemple #6
0
        )
        scheduler = ReduceLROnPlateau(optimizer,
                                      mode="min",
                                      factor=0.1,
                                      patience=0)

        with open(log_file, "a") as f:
            f.write(f"Run: {run + 1}\n")
        for epoch in tqdm(range(_epoch_num), desc="[Epoch]"):

            start_time = time.time()
            train_loss, train_acc, dev_loss, dev_acc = train(
                train_data_loader,
                probe,
                bert,
                loss_fct,
                optimizer,
                dev_data_loader=dev_data_loader,
                scheduler=scheduler,
            )

            secs = int(time.time() - start_time)
            mins = secs / 60
            secs = secs % 60

            if optimizer.param_groups[0][
                    "lr"] < _stop_lr or epoch == _epoch_num - 1:
                test_loss, test_acc = evaluate(test_data_loader, probe, bert,
                                               loss_fct)

                with open(log_file, "a") as f:
Exemple #7
0
def main():

    #Data preprocessing for Transfrom , and Normalize the data with the imageNet weight
    transformations = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225]),
    ])

    #Get traing data and test data
    train_dataset = CifarDataset(TRAIN_CSV_PATH, TRAIN_IMG_PATH,
                                 transformations)
    train_loader = CifarDataloader(train_dataset,
                                   batch_size=BATCH_SIZE,
                                   shuffle=True,
                                   num_workers=2)
    test_dataset = CifarDataset(TEST_CSV_PATH, TEST_IMG_PATH, transformations)
    test_loader = CifarDataloader(test_dataset,
                                  batch_size=BATCH_SIZE,
                                  shuffle=True,
                                  num_workers=2)

    #choose the model with resnet50
    model = resnet50(pretrained=True, num_classes=10)
    criterion = nn.CrossEntropyLoss()

    if USE_GPU:
        model = model.cuda()
        criterion = criterion.cuda()

    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

    # load_checkpoint(os.path.join('checkpoint', 'last_checkpoint.pth.tar'), model, optimizer)

    # make optimizer into a horovod Version .
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
    optimizer = hvd.DistributedOptimizer(
        optimizer, named_parameters=model.named_parameters())

    # def save_checkpoint(epoch):
    #     if hvd.rank() == 0:
    #         filepath = args.checkpoint_format.format(epoch=epoch + 1)
    #         state = {
    #             'model': model.state_dict(),
    #             'optimizer': optimizer.state_dict(),
    #         }
    #         torch.save(state, filepath)

    for epoch in range(EPOCHS):
        train(train_loader,
              model,
              criterion,
              optimizer,
              epoch + 1,
              USE_GPU,
              writer=writer)
        test(test_loader, model, USE_GPU)
        save_checkpoint(epoch)
        if hvd.rank() == 0:
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                }, os.path.join('checkpoint'))