def __init__(self, data, batch_size, shuffle):
        """Generator to iterate through all the data indefinitely in batches.

        Args:
            data: list of numpy.arrays, where each of them must be of the same
                length on its leading dimension.
            batch_size: number of data points to return in a minibatch. It must
                be at least 1.
            shuffle: if True, the data is iterated in a random order, and this
                order differs for each pass of the data.
        """
        if not isinstance(batch_size, int) or batch_size < 1:
            raise ValueError(
                "batch_size should be a positive integer, %r given" %
                batch_size)
        self._data = data
        self._batch_size = batch_size
        self._shuffle = shuffle
        # total number of data points in data
        self._N = None
        for datum in self._data:
            if self._N is None:
                self._N = len(datum)
            else:
                if self._N != len(datum):
                    raise ValueError(
                        "data have different leading dimensions: %d and %d" %
                        (self._N, len(datum)))
        if self._shuffle:
            self._fixed_random = util.FixedRandom()
        self._indices = np.array([], dtype=int)
Exemple #2
0
    def initializeParticles(self):
        """
        Initialize particles to be consistent with a uniform prior.

        Each particle is a tuple of ghost positions. Use self.numParticles for
        the number of particles. You may find the python package 'itertools' helpful.
        Specifically, you will need to think about permutations of legal ghost
        positions, with the additional understanding that ghosts may occupy the
        same space. Look at the 'product' function in itertools to get an
        implementation of the Cartesian product. Note: If you use
        itertools, keep in mind that permutations are not returned in a random order;
        you must shuffle the list of permutations in order to ensure even placement
        of particles across the board. Use self.legalPositions to obtain a list of
        positions a ghost may occupy.

          ** NOTE **
            the variable you store your particles in must be a list; a list is simply a collection
            of unweighted variables (positions in this case). Storing your particles as a Counter or
            dictionary (where there could be an associated weight with each position) is incorrect
            and will produce errors

        """
        "*** YOUR CODE HERE ***"
        product = [
            item for item in itertools.product(self.legalPositions,
                                               repeat=self.numGhosts)
        ]
        util.FixedRandom().random.shuffle(product)
        self.particles = [
            product[i % len(product)] for i in range(self.numParticles)
        ]
 def __init__(self,
              input_ph=None,
              prediction_tensor=None,
              max_eval_batch_size=500):
     self.input_ph = input_ph
     self.prediction_tensor = prediction_tensor
     self._param_vars = OrderedDict()
     self._fixed_random = util.FixedRandom(
     )  # deterministically initialize weights
     self._max_eval_batch_size = max_eval_batch_size
Exemple #4
0
 def solveProblem(self, moduleDict):
     inferenceModule = moduleDict['inference']
     if self.alg == 'inferenceByVariableElimination':
         studentComputationWithCallTracking = getattr(inferenceModule, self.alg + 'WithCallTracking')
         studentComputation = studentComputationWithCallTracking(self.callTrackingList)
         solvedFactor = studentComputation(self.problemBayesNet, self.queryVariables, self.evidenceDict, self.variableEliminationOrder)
     elif self.alg == 'inferenceByLikelihoodWeightingSampling':
         randomSource = util.FixedRandom().random
         studentComputationRandomSource = getattr(inferenceModule, self.alg + 'RandomSource')
         studentComputation = studentComputationRandomSource(randomSource)
         #random.seed(self.seed) # reset seed so that if we had to compute the bayes net we still have the initial seed
         solvedFactor = studentComputation(self.problemBayesNet, self.queryVariables, self.evidenceDict, self.numSamples)
     
     return solvedFactor
def get_fixed_random():
    global _RANDOM
    if _RANDOM is None:
        _RANDOM = util.FixedRandom()
    return _RANDOM