Exemple #1
0
 def tag_dropout(self, variables, rng=None, **hyperparameters):
     from blocks.roles import INPUT
     from blocks.filter import VariableFilter
     bricks_ = [brick for brick in util.all_bricks([self.mlp])
                if isinstance(brick, bricks.Linear)]
     variables = (VariableFilter(roles=[INPUT], bricks=bricks_)
                  (theano.gof.graph.ancestors(variables)))
     graph.add_transform(
         variables,
         graph.DropoutTransform("classifier_dropout", rng=rng),
         reason="regularization")
Exemple #2
0
 def tag_dropout(self, variables, rng=None, **hyperparameters):
     from blocks.roles import INPUT
     from blocks.filter import VariableFilter
     rng = util.get_rng(seed=1)
     bricks_ = [brick for brick in util.all_bricks(self.emitters)
                if isinstance(brick, bricks.Linear)]
     variables = (VariableFilter(roles=[INPUT], bricks=bricks_)
                  (theano.gof.graph.ancestors(variables)))
     graph.add_transform(
         variables,
         graph.DropoutTransform("classifier_dropout", rng=rng),
         reason="regularization")
Exemple #3
0
 def tag_attention_dropout(self, variables, rng=None, **hyperparameters):
     from blocks.roles import INPUT, has_roles
     bricks_ = [
         brick for brick in util.all_bricks([self.patch_transform])
         if isinstance(brick, (bricks.Linear, conv2d.Convolutional,
                               conv3d.Convolutional))
     ]
     variables = [
         var for var in graph.deep_ancestors(variables)
         if (has_roles(var, [INPUT]) and any(brick in var.tag.annotations
                                             for brick in bricks_))
     ]
     graph.add_transform(variables,
                         graph.DropoutTransform("attention_dropout",
                                                rng=rng),
                         reason="regularization")