img = np.concatenate((img, img, img), axis=2) img = Image.fromarray(img) #12-net #box: xmin, ymin, xmax, ymax, score, cropped_img, scale neg_box = util.sliding_window(img, param.thr_12, net_12, input_12_node) #12-calib neg_db_tmp = np.zeros((len(neg_box), param.img_size_12, param.img_size_12, param.input_channel), np.float32) for id_, box in enumerate(neg_box): neg_db_tmp[id_, :] = util.img2array(box[5], param.img_size_12) calib_result = net_12_calib.prediction.eval( feed_dict={input_12_node: neg_db_tmp}) neg_box = util.calib_box(neg_box, calib_result, img) #NMS for each scale scale_cur = 0 scale_box = [] suppressed = [] for id_, box in enumerate(neg_box): if box[6] == scale_cur: scale_box.append(box) if box[6] != scale_cur or id_ == len(neg_box) - 1: suppressed += util.NMS(scale_box) scale_cur = box[6] scale_box = [box] neg_box = suppressed suppressed = []
#12-net #xmin, ymin, xmax, ymax, score, cropped_img, scale result_box = util.sliding_window(img, param.thr_12, net_12, input_12_node) #12-calib result_db_tmp = np.zeros((len(result_box), param.img_size_12, param.img_size_12, param.input_channel), np.float32) for id_, box in enumerate(result_box): result_db_tmp[id_, :] = util.img2array(box[5], param.img_size_12) calib_result = net_12_calib.prediction.eval( feed_dict={input_12_node: result_db_tmp}) result_box = util.calib_box(result_box, calib_result, img) #NMS for each scale scale_cur = 0 scale_box = [] suppressed = [] for id_, box in enumerate(result_box): if box[6] == scale_cur: scale_box.append(box) if box[6] != scale_cur or id_ == len(result_box) - 1: suppressed += util.NMS(scale_box) scale_cur = box[6] scale_box = [box] result_box = suppressed suppressed = []