def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.remap(time_index_name='vintage')
         self.values.replace(0,1,inplace=True)
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
Exemple #2
0
 def levelize_costs(self):
     if hasattr(self, 'is_levelized'):
         inflation = float(cfg.cfgfile.get('case', 'inflation_rate'))
         rate = self.cost_of_capital - inflation
         if self.is_levelized == 0:
             self.values_level = -np.pmt(rate, self.book_life, 1, 0,
                                         'end') * self.values
             util.convert_age(self,
                              vintages=self.vintages,
                              years=self.years,
                              attr_from='values_level',
                              attr_to='values_level',
                              reverse=False)
         else:
             self.values_level = self.values.copy()
             util.convert_age(self,
                              vintages=self.vintages,
                              years=self.years,
                              attr_from='values_level',
                              attr_to='values_level',
                              reverse=False)
             self.values = np.pv(rate, self.book_life, -1, 0,
                                 'end') * self.values
     else:
         raise ValueError(
             'Supply Technology id %s needs to indicate whether costs are levelized '
             % self.id)
Exemple #3
0
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.remap(time_index_name='vintage')
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     elif self.data is False:
         index = pd.MultiIndex.from_product([cfg.geo.geographies[cfg.cfgfile.get('case','primary_geography')],self.vintages], names=[cfg.cfgfile.get('case', 'primary_geography'),'vintage'])
         self.values = util.empty_df(index,columns=years,fill_value=0.0)    
         self.data = True
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self._has_data and self.raw_values is not None:
         self.remap(time_index_name='vintage',  converted_geography=GeoMapper.supply_primary_geography)
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     elif not self._has_data:
         index = pd.MultiIndex.from_product([GeoMapper.geography_to_gau[GeoMapper.supply_primary_geography],self.vintages], names=[GeoMapper.supply_primary_geography,'vintage'])
         self.values = util.empty_df(index,columns=years,fill_value=0.0)
         self._has_data = True
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.remap(map_from='raw_values', map_to='values', time_index_name='vintage')
         util.convert_age(self, reverse=True, vintages=self.vintages, years=self.years)
     if self.data is False:
        self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
Exemple #6
0
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.remap(map_from='raw_values', map_to='values', time_index_name='vintage')
         util.convert_age(self, reverse=True, vintages=self.vintages, years=self.years)
     if self.data is False:
        self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
Exemple #7
0
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.remap(time_index_name='vintage')
         self.values.replace(0, 1, inplace=True)
         util.convert_age(self,
                          vintages=self.vintages,
                          years=self.years,
                          attr_from='values',
                          attr_to='values',
                          reverse=True)
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self._has_data and self.raw_values is not None and (cfg.rio_supply_run is not True or 'vintage' in self.raw_values.index.names):
         self.remap(time_index_name='vintage', converted_geography=GeoMapper.supply_primary_geography,fill_value=np.nan)
         self.values.replace(0,1,inplace=True)
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     elif self._has_data and self.raw_values is not None and cfg.rio_supply_run==True:
         self.remap(time_index_name='year', converted_geography=GeoMapper.supply_primary_geography, fill_value=np.nan)
         self.values.replace(0, 1, inplace=True)
         self.values = util.add_and_set_index(self.values,'vintage',self.vintages,index_location=-1)
         self.values = self.values.squeeze().unstack(level='year')
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self._has_data and self.raw_values is not None:
         self.convert()
         self.remap(map_from='values', map_to='values', converted_geography=GeoMapper.supply_primary_geography, time_index_name='vintage')
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values_level', reverse=False)
     if not self._has_data:
         self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
 def levelize_costs(self):
     if hasattr(self, 'is_levelized'):
         inflation = float(cfg.cfgfile.get('case', 'inflation_rate'))
         rate = self.cost_of_capital - inflation
         if self.is_levelized == 0:
             self.values_level = - np.pmt(rate, self.book_life, 1, 0, 'end') * self.values
             util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
         else:
             self.values_level = self.values.copy()
             util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
             self.values = np.pv(rate, self.book_life, -1, 0, 'end') * self.values
     else:
         raise ValueError('Supply Technology id %s needs to indicate whether costs are levelized ' %self.id)
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data:
         self.remap(map_from='raw_values', map_to='values', time_index_name='vintage')
         util.convert_age(self, reverse=True, vintages=self.vintages, years=self.years)
     elif self.data is False:
         setattr(self, 'converted', False)
     if self.empty is True:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.converted = True
     else:
         self.empty = False
Exemple #12
0
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.empty is False:
         self.convert()
         self.remap(map_from='values', map_to='values', time_index_name='vintage')
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     elif self.data is False:
         setattr(self, 'converted', False)
     else:
         self.converted = False
         # adds fixed output shapes for technologies which are not dispatchable
     if self.empty is True:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.converted = True
     else:
         self.empty = False   
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.raw_values is not None:
         self.convert()
         self.remap(map_from='values',
                    map_to='values',
                    time_index_name='vintage')
         util.convert_age(self,
                          reverse=True,
                          vintages=self.vintages,
                          years=self.years)
         self.values = util.remove_df_levels(self.values,
                                             cfg.removed_demand_levels,
                                             agg_function='mean')
     if self.data is False:
         self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
Exemple #14
0
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self.data and self.empty is False:
         self.remap()
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     elif self.data is False:
         index =  pd.MultiIndex.from_product([cfg.geo.geographies[cfg.cfgfile.get('case','primary_geography')],self.vintages], names=[cfg.cfgfile.get('case', 'primary_geography'),'vintage'])
         self.values = util.empty_df(index,columns=years,fill_value=1.0)    
         self.data = True
         self.empty = False
         setattr(self, 'converted', False)
     else:
         self.converted = False
         # adds fixed output shapes for technologies which are not dispatchable
     if self.empty is True:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.converted = True
     else:
         self.empty = False   
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self._has_data and self.raw_values is not None and cfg.rio_supply_run and 'year' in self.raw_values.index.names:
         self.remap(map_from='raw_values', map_to='values', current_geography=cfg.rio_geography,converted_geography=GeoMapper.supply_primary_geography,
                    time_index_name='year', lower=None, missing_intensity_geos=False)
         self.values = self.values.unstack('year')
         self.values.columns = self.values.columns.droplevel()
         self.values = pd.concat([self.values] *len(self.vintages),keys=self.vintages,names=['vintage'])
         self.values['efficiency_type'] = 'consumed'
         self.values = self.values.set_index('efficiency_type',append=True)
     elif self._has_data and self.raw_values is not None:
         self.convert()
         self.remap(map_from='values', map_to='values', converted_geography=GeoMapper.supply_primary_geography, time_index_name='vintage', lower=None,missing_intensity_geos=False)
         util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values', attr_to='values', reverse=True)
     if not self._has_data:
         self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
Exemple #16
0
 def levelize_costs(self):
     if self.is_levelized == 1:
         inflation = float(cfg.cfgfile.get('case', 'inflation_rate'))
         rate = self.cost_of_capital - inflation
         if self.is_levelized == 0:
             self.values_level = -np.pmt(rate, self.book_life, 1, 0,
                                         'end') * self.values
             util.convert_age(self,
                              attr_from='values_level',
                              attr_to='values_level',
                              reverse=False,
                              vintages=self.vintages,
                              years=self.years)
         else:
             self.values_level = self.values.copy()
             util.convert_age(self,
                              attr_from='values_level',
                              attr_to='values_level',
                              reverse=False,
                              vintages=self.vintages,
                              years=self.years)
             self.values = np.pv(rate, self.book_life, -1, 0,
                                 'end') * self.values
     else:
         util.convert_age(self,
                          reverse=False,
                          vintages=self.vintages,
                          years=self.years)
 def levelize_costs(self):
     if hasattr(self, 'is_levelized') and (
             self.definition == 'absolute' or
         (self.definition == 'relative'
          and self.reference_tech_operation == 'add')):
         inflation = cfg.getParamAsFloat('inflation_rate')
         rate = self.cost_of_capital - inflation
         if self.is_levelized == 0:
             self.values_level = -np.pmt(rate, self.book_life, 1, 0,
                                         'end') * self.values
             util.convert_age(self,
                              attr_from='values_level',
                              attr_to='values_level',
                              reverse=False,
                              vintages=self.vintages,
                              years=self.years)
         else:
             self.values_level = self.values.copy()
             util.convert_age(self,
                              attr_from='values_level',
                              attr_to='value_level',
                              reverse=False,
                              vintages=self.vintages,
                              years=self.years)
             self.values = np.pv(rate, self.book_life, -1, 0,
                                 'end') * self.values
     else:
         util.convert_age(self,
                          attr_from='values',
                          attr_to='values_level',
                          reverse=False,
                          vintages=self.vintages,
                          years=self.years)
 def calculate(self, vintages, years):
     self.vintages = vintages
     self.years = years
     if self._has_data and self.raw_values is not None:
         self.remap(map_from='raw_values',
                    map_to='values',
                    time_index_name='vintage',
                    converted_geography=GeoMapper.demand_primary_geography)
         util.convert_age(self,
                          attr_from='values',
                          attr_to='values',
                          reverse=False,
                          vintages=self.vintages,
                          years=self.years)
         self.values = util.remove_df_levels(self.values,
                                             cfg.removed_demand_levels,
                                             agg_function='mean')
     if not self._has_data:
         self.absolute = False
     if self.raw_values is None:
         # if the class is empty, then there is no data for conversion, so the class is considered converted
         self.absolute = True
 def levelize_costs(self):
     if hasattr(self, 'is_levelized'):
         inflation = float(cfg.cfgfile.get('case', 'inflation_rate'))
         rate = self.cost_of_capital - inflation
         if self.is_levelized == 0:
             self.values_level = - np.pmt(rate, self.book_life, 1, 0, 'end') * self.values
             util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
         else:
             self.values_level = self.values.copy()
             util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
             self.values = np.pv(rate, self.book_life, -1, 0, 'end') * self.values
     else:
         util.convert_age(self, vintages=self.vintages, years=self.years, reverse=False)
    def levelize_costs(self):
        if hasattr(self, 'is_levelized'):
            inflation = cfg.getParamAsFloat('inflation_rate')
            try:
                rate = self.cost_of_capital - inflation
            except:
                pdb.set_trace()
            if self.is_levelized == 0:
                self.values_level = - np.pmt(rate, self.book_life, 1, 0, 'end') * self.values
                util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
            elif self.is_levelized==1:
                self.values_level = self.values.copy()
                util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
                self.values = np.pv(rate, self.book_life, -1, 0, 'end') * self.values
            elif self.definition == 'relative':
                self.values_level = self.values.copy()
                util.convert_age(self, vintages=self.vintages, years=self.years, attr_from='values_level', attr_to='values_level', reverse=False)
            else:
                raise ValueError("no specification of whether the technology cost is levelized")

        else:
            raise ValueError('Supply Technology id %s needs to indicate whether costs are levelized ' %self.name)