def load_feature(img_path): img = util.cv_imread(img_path) crop = img / 255. crop = crop - 0.5 crop = crop * 2. crop = cv2.resize(crop, (config.INPUT_SIZE, config.INPUT_SIZE)) return crop
def load_feature(img_path): img = util.cv_imread(img_path) crop = img / 255. crop = crop - 0.5 crop = crop * 2. crop = cv2.resize(crop, (250, 250)) return crop
def load_feature(img_path): img = util.cv_imread(img_path) img= relight(img,random.uniform(0.9, 1.1), random.randint(-10, 10)) crop= img / 255. crop = crop - 0.5 crop = crop * 2. crop = cv2.resize(crop, (229, 229)) return crop
def load_feature(img_path): img = util.cv_imread(img_path) crop = random_crop(img, 224) flip = np.random.randint(0, 3) if flip == 1: flipimg = cv2.flip(crop, 1) if flip == 0: flipimg = cv2.flip(crop, 0) if flip == 2: flipimg = crop return flipimg
def load_feature(img_path): img = util.cv_imread(img_path) img = relight(img, random.uniform(0.9, 1.1), random.randint(-10, 10)) crop = img / 255. r1 = random.uniform(0.9, 1.1) r2 = random.randint(0, 45) crop = rotate(crop, angle=r2, scale=r1) flip = np.random.randint(0, 3) if flip == 1: flipimg = cv2.flip(crop, 1) if flip == 0: flipimg = cv2.flip(crop, 0) if flip == 2: flipimg = crop crop = cv2.resize(flipimg, (224, 224)) return crop
def load_feature(img_path): img = util.cv_imread(img_path) norm_img = img / 255. resized_img = util.resize_img(norm_img, size) crop = cv2.resize(resized_img, (size, size)) return crop
def load_feature(img_path): img = util.cv_imread(img_path) norm_img = img / 255. resized_img = util.resize_img(norm_img, config.INPUT_SIZE) crop = cv2.resize(resized_img, (config.INPUT_SIZE, config.INPUT_SIZE)) return crop